Revert "ADT: Remove UB in ilist (and use a circular linked list)"

This reverts commit r278974 which broke some of our bots (e.g.
clang-cmake-aarch64-42vma, clang-cmake-aarch64-full).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279053 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Diana Picus 2016-08-18 11:17:53 +00:00
parent f1b025c185
commit 9d8d6de2e0
3 changed files with 286 additions and 242 deletions

View File

@ -15,16 +15,17 @@
// replacement does not provide a constant time size() method, so be careful to
// use empty() when you really want to know if it's empty.
//
// The ilist class is implemented as a circular list. The list itself contains
// a sentinel node, whose Next points at begin() and whose Prev points at
// rbegin(). The sentinel node itself serves as end() and rend().
// The ilist class is implemented by allocating a 'tail' node when the list is
// created (using ilist_traits<>::createSentinel()). This tail node is
// absolutely required because the user must be able to compute end()-1. Because
// of this, users of the direct next/prev links will see an extra link on the
// end of the list, which should be ignored.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ILIST_H
#define LLVM_ADT_ILIST_H
#include "llvm/ADT/ilist_node.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <cassert>
@ -37,42 +38,37 @@ namespace llvm {
template<typename NodeTy, typename Traits> class iplist;
template<typename NodeTy> class ilist_iterator;
/// An access class for ilist_node private API.
/// An access class for next/prev on ilist_nodes.
///
/// This gives access to the private parts of ilist nodes. Nodes for an ilist
/// should friend this class if they inherit privately from ilist_node.
///
/// It's strongly discouraged to *use* this class outside of the ilist
/// It's strongly discouraged to *use* this class outside of ilist
/// implementation.
struct ilist_node_access {
template <typename T> static ilist_node<T> *getNodePtr(T *N) { return N; }
template <typename T> static const ilist_node<T> *getNodePtr(const T *N) {
return N;
}
template <typename T> static ilist_node<T> *getPrev(ilist_node<T> *N) {
template <typename NodeTy> static NodeTy *getPrev(NodeTy *N) {
return N->getPrev();
}
template <typename T> static ilist_node<T> *getNext(ilist_node<T> *N) {
template <typename NodeTy> static NodeTy *getNext(NodeTy *N) {
return N->getNext();
}
template <typename T> static const ilist_node<T> *getPrev(const ilist_node<T> *N) {
template <typename NodeTy> static const NodeTy *getPrev(const NodeTy *N) {
return N->getPrev();
}
template <typename T> static const ilist_node<T> *getNext(const ilist_node<T> *N) {
template <typename NodeTy> static const NodeTy *getNext(const NodeTy *N) {
return N->getNext();
}
template <typename T> static void setPrev(ilist_node<T> *N, ilist_node<T> *Prev) {
template <typename NodeTy> static void setPrev(NodeTy *N, NodeTy *Prev) {
N->setPrev(Prev);
}
template <typename T> static void setNext(ilist_node<T> *N, ilist_node<T> *Next) {
template <typename NodeTy> static void setNext(NodeTy *N, NodeTy *Next) {
N->setNext(Next);
}
template <typename T> static void setPrev(ilist_node<T> *N, std::nullptr_t) {
template <typename NodeTy> static void setPrev(NodeTy *N, std::nullptr_t) {
N->setPrev(nullptr);
}
template <typename T> static void setNext(ilist_node<T> *N, std::nullptr_t) {
template <typename NodeTy> static void setNext(NodeTy *N, std::nullptr_t) {
N->setNext(nullptr);
}
};
@ -97,31 +93,111 @@ template <class TraitsT, class NodeT> struct HasGetNext {
static const bool value = sizeof(hasGetNext<TraitsT>(nullptr)) == sizeof(Yes);
};
/// Type trait to check for a traits class that has a createSentinel member (as
/// a canary for any of the ilist_sentinel_traits API).
template <class TraitsT> struct HasCreateSentinel {
typedef char Yes[1];
typedef char No[2];
template <size_t N> struct SFINAE {};
template <class U>
static Yes &
hasCreateSentinel(SFINAE<sizeof(make<U>().createSentinel())> * = 0);
template <class U> static No &hasCreateSentinel(...);
static const bool value =
sizeof(hasCreateSentinel<TraitsT>(nullptr)) == sizeof(Yes);
};
} // end namespace ilist_detail
template <typename NodeTy> struct ilist_traits;
template<typename NodeTy>
struct ilist_traits;
// TODO: Delete uses from subprojects, then delete these.
template <typename NodeTy> struct ilist_sentinel_traits {};
template <typename NodeTy> struct ilist_embedded_sentinel_traits {};
template <typename NodeTy> struct ilist_half_embedded_sentinel_traits {};
template <typename NodeTy> struct ilist_full_embedded_sentinel_traits {};
/// ilist_sentinel_traits - A fragment for template traits for intrusive list
/// that provides default sentinel implementations for common operations.
///
/// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
/// strategy. The sentinel is stored in the prev field of ilist's Head.
///
template<typename NodeTy>
struct ilist_sentinel_traits {
/// createSentinel - create the dynamic sentinel
static NodeTy *createSentinel() { return new NodeTy(); }
/// destroySentinel - deallocate the dynamic sentinel
static void destroySentinel(NodeTy *N) { delete N; }
/// provideInitialHead - when constructing an ilist, provide a starting
/// value for its Head
/// @return null node to indicate that it needs to be allocated later
static NodeTy *provideInitialHead() { return nullptr; }
/// ensureHead - make sure that Head is either already
/// initialized or assigned a fresh sentinel
/// @return the sentinel
static NodeTy *ensureHead(NodeTy *&Head) {
if (!Head) {
Head = ilist_traits<NodeTy>::createSentinel();
ilist_traits<NodeTy>::noteHead(Head, Head);
ilist_node_access::setNext(Head, nullptr);
return Head;
}
return ilist_node_access::getPrev(Head);
}
/// noteHead - stash the sentinel into its default location
static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
ilist_node_access::setPrev(NewHead, Sentinel);
}
};
template <typename NodeTy> class ilist_half_node;
template <typename NodeTy> class ilist_node;
/// Traits with an embedded ilist_node as a sentinel.
template <typename NodeTy> struct ilist_embedded_sentinel_traits {
/// Get hold of the node that marks the end of the list.
///
/// FIXME: This downcast is UB. See llvm.org/PR26753.
LLVM_NO_SANITIZE("object-size")
NodeTy *createSentinel() const {
// Since i(p)lists always publicly derive from their corresponding traits,
// placing a data member in this class will augment the i(p)list. But since
// the NodeTy is expected to be publicly derive from ilist_node<NodeTy>,
// there is a legal viable downcast from it to NodeTy. We use this trick to
// superimpose an i(p)list with a "ghostly" NodeTy, which becomes the
// sentinel. Dereferencing the sentinel is forbidden (save the
// ilist_node<NodeTy>), so no one will ever notice the superposition.
return static_cast<NodeTy *>(&Sentinel);
}
static void destroySentinel(NodeTy *) {}
NodeTy *provideInitialHead() const { return createSentinel(); }
NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
static void noteHead(NodeTy *, NodeTy *) {}
private:
mutable ilist_node<NodeTy> Sentinel;
};
/// Trait with an embedded ilist_half_node as a sentinel.
template <typename NodeTy> struct ilist_half_embedded_sentinel_traits {
/// Get hold of the node that marks the end of the list.
///
/// FIXME: This downcast is UB. See llvm.org/PR26753.
LLVM_NO_SANITIZE("object-size")
NodeTy *createSentinel() const {
// See comment in ilist_embedded_sentinel_traits::createSentinel().
return static_cast<NodeTy *>(&Sentinel);
}
static void destroySentinel(NodeTy *) {}
NodeTy *provideInitialHead() const { return createSentinel(); }
NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
static void noteHead(NodeTy *, NodeTy *) {}
private:
mutable ilist_half_node<NodeTy> Sentinel;
};
/// Traits with an embedded full node as a sentinel.
template <typename NodeTy> struct ilist_full_embedded_sentinel_traits {
/// Get hold of the node that marks the end of the list.
NodeTy *createSentinel() const { return &Sentinel; }
static void destroySentinel(NodeTy *) {}
NodeTy *provideInitialHead() const { return createSentinel(); }
NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
static void noteHead(NodeTy *, NodeTy *) {}
private:
mutable NodeTy Sentinel;
};
/// ilist_node_traits - A fragment for template traits for intrusive list
/// that provides default node related operations.
@ -143,7 +219,8 @@ struct ilist_node_traits {
/// for all common operations.
///
template <typename NodeTy>
struct ilist_default_traits : public ilist_node_traits<NodeTy> {};
struct ilist_default_traits : public ilist_sentinel_traits<NodeTy>,
public ilist_node_traits<NodeTy> {};
// Template traits for intrusive list. By specializing this template class, you
// can change what next/prev fields are used to store the links...
@ -186,15 +263,16 @@ public:
typedef node_type &node_reference;
private:
node_pointer NodePtr = nullptr;
pointer NodePtr;
public:
/// Create from an ilist_node.
explicit ilist_iterator(node_reference N) : NodePtr(&N) {}
explicit ilist_iterator(node_reference N)
: NodePtr(static_cast<NodeTy *>(&N)) {}
explicit ilist_iterator(pointer NP) : NodePtr(NP) {}
explicit ilist_iterator(reference NR) : NodePtr(&NR) {}
ilist_iterator() = default;
ilist_iterator() : NodePtr(nullptr) {}
// This is templated so that we can allow constructing a const iterator from
// a nonconst iterator...
@ -203,23 +281,20 @@ public:
const ilist_iterator<node_ty> &RHS,
typename std::enable_if<std::is_convertible<node_ty *, NodeTy *>::value,
void *>::type = nullptr)
: NodePtr(RHS.getNodePtr()) {}
: NodePtr(RHS.getNodePtrUnchecked()) {}
// This is templated so that we can allow assigning to a const iterator from
// a nonconst iterator...
template <class node_ty>
const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
NodePtr = RHS.getNodePtr();
NodePtr = RHS.getNodePtrUnchecked();
return *this;
}
void reset(pointer NP) { NodePtr = NP; }
// Accessors...
reference operator*() const {
assert(!NodePtr->isKnownSentinel());
return static_cast<NodeTy &>(*getNodePtr());
}
reference operator*() const { return *NodePtr; }
pointer operator->() const { return &operator*(); }
// Comparison operators
@ -253,6 +328,9 @@ public:
/// Get the underlying ilist_node.
node_pointer getNodePtr() const { return static_cast<node_pointer>(NodePtr); }
// Internal interface, do not use...
pointer getNodePtrUnchecked() const { return NodePtr; }
};
// Allow ilist_iterators to convert into pointers to a node automatically when
@ -278,33 +356,56 @@ template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
//===----------------------------------------------------------------------===//
//
/// The subset of list functionality that can safely be used on nodes of
/// polymorphic types, i.e. a heterogeneous list with a common base class that
/// holds the next/prev pointers. The only state of the list itself is an
/// ilist_sentinel, which holds pointers to the first and last nodes in the
/// list.
/// iplist - The subset of list functionality that can safely be used on nodes
/// of polymorphic types, i.e. a heterogeneous list with a common base class that
/// holds the next/prev pointers. The only state of the list itself is a single
/// pointer to the head of the list.
///
/// This list can be in one of three interesting states:
/// 1. The list may be completely unconstructed. In this case, the head
/// pointer is null. When in this form, any query for an iterator (e.g.
/// begin() or end()) causes the list to transparently change to state #2.
/// 2. The list may be empty, but contain a sentinel for the end iterator. This
/// sentinel is created by the Traits::createSentinel method and is a link
/// in the list. When the list is empty, the pointer in the iplist points
/// to the sentinel. Once the sentinel is constructed, it
/// is not destroyed until the list is.
/// 3. The list may contain actual objects in it, which are stored as a doubly
/// linked list of nodes. One invariant of the list is that the predecessor
/// of the first node in the list always points to the last node in the list,
/// and the successor pointer for the sentinel (which always stays at the
/// end of the list) is always null.
///
template <typename NodeTy, typename Traits = ilist_traits<NodeTy>>
class iplist : public Traits, ilist_node_access {
// TODO: Drop these assertions anytime after 4.0 is branched (keep them for
// one release to help out-of-tree code update).
#if !defined(_MSC_VER)
// FIXME: This fails in MSVC, but it's worth keeping around to help
// non-Windows users root out bugs in their ilist_traits.
static_assert(!ilist_detail::HasGetNext<Traits, NodeTy>::value,
"ilist next and prev links are not customizable!");
static_assert(!ilist_detail::HasCreateSentinel<Traits>::value,
"ilist sentinel is not customizable!");
#endif
ilist_sentinel<NodeTy> Sentinel;
mutable NodeTy *Head;
typedef ilist_node<NodeTy> node_type;
typedef const ilist_node<NodeTy> const_node_type;
// Use the prev node pointer of 'head' as the tail pointer. This is really a
// circularly linked list where we snip the 'next' link from the sentinel node
// back to the first node in the list (to preserve assertions about going off
// the end of the list).
NodeTy *getTail() { return this->ensureHead(Head); }
const NodeTy *getTail() const { return this->ensureHead(Head); }
void setTail(NodeTy *N) const { this->noteHead(Head, N); }
/// CreateLazySentinel - This method verifies whether the sentinel for the
/// list has been created and lazily makes it if not.
void CreateLazySentinel() const {
this->ensureHead(Head);
}
static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
// Copying intrusively linked nodes doesn't make sense.
// No fundamental reason why iplist can't be copyable, but the default
// copy/copy-assign won't do.
iplist(const iplist &) = delete;
void operator=(const iplist &) = delete;
@ -321,14 +422,30 @@ public:
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
iplist() = default;
~iplist() { clear(); }
iplist() : Head(this->provideInitialHead()) {}
~iplist() {
if (!Head) return;
clear();
Traits::destroySentinel(getTail());
}
// Iterator creation methods.
iterator begin() { return ++iterator(Sentinel); }
const_iterator begin() const { return ++const_iterator(Sentinel); }
iterator end() { return iterator(Sentinel); }
const_iterator end() const { return const_iterator(Sentinel); }
iterator begin() {
CreateLazySentinel();
return iterator(Head);
}
const_iterator begin() const {
CreateLazySentinel();
return const_iterator(Head);
}
iterator end() {
CreateLazySentinel();
return iterator(getTail());
}
const_iterator end() const {
CreateLazySentinel();
return const_iterator(getTail());
}
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
@ -339,39 +456,44 @@ public:
// Miscellaneous inspection routines.
size_type max_size() const { return size_type(-1); }
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return Sentinel.empty(); }
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
return !Head || Head == getTail();
}
// Front and back accessor functions...
reference front() {
assert(!empty() && "Called front() on empty list!");
return *begin();
return *Head;
}
const_reference front() const {
assert(!empty() && "Called front() on empty list!");
return *begin();
return *Head;
}
reference back() {
assert(!empty() && "Called back() on empty list!");
return *--end();
return *this->getPrev(getTail());
}
const_reference back() const {
assert(!empty() && "Called back() on empty list!");
return *--end();
return *this->getPrev(getTail());
}
void swap(iplist &RHS) {
assert(0 && "Swap does not use list traits callback correctly yet!");
std::swap(Sentinel, RHS.Sentinel);
std::swap(Head, RHS.Head);
}
iterator insert(iterator where, NodeTy *New) {
node_type *NewN = this->getNodePtr(New);
node_type *Next = where.getNodePtr();
node_type *Prev = this->getPrev(Next);
this->setNext(NewN, Next);
this->setPrev(NewN, Prev);
this->setNext(Prev, NewN);
this->setPrev(Next, NewN);
NodeTy *CurNode = where.getNodePtrUnchecked();
NodeTy *PrevNode = this->getPrev(CurNode);
this->setNext(New, CurNode);
this->setPrev(New, PrevNode);
if (CurNode != Head) // Is PrevNode off the beginning of the list?
this->setNext(PrevNode, New);
else
Head = New;
this->setPrev(CurNode, New);
this->addNodeToList(New); // Notify traits that we added a node...
return iterator(New);
@ -391,23 +513,24 @@ public:
NodeTy *remove(iterator &IT) {
assert(IT != end() && "Cannot remove end of list!");
NodeTy *Node = &*IT;
node_type *Base = this->getNodePtr(Node);
node_type *Next = this->getNext(Base);
node_type *Prev = this->getPrev(Base);
NodeTy *NextNode = this->getNext(Node);
NodeTy *PrevNode = this->getPrev(Node);
this->setNext(Prev, Next);
this->setPrev(Next, Prev);
IT = iterator(*Next);
if (Node != Head) // Is PrevNode off the beginning of the list?
this->setNext(PrevNode, NextNode);
else
Head = NextNode;
this->setPrev(NextNode, PrevNode);
IT.reset(NextNode);
this->removeNodeFromList(Node); // Notify traits that we removed a node...
// Set the next/prev pointers of the current node to null. This isn't
// strictly required, but this catches errors where a node is removed from
// an ilist (and potentially deleted) with iterators still pointing at it.
// After those iterators are incremented or decremented, they become
// default-constructed iterators, and will assert on increment, decrement,
// and dereference instead of "usually working".
this->setNext(Base, nullptr);
this->setPrev(Base, nullptr);
// When those iterators are incremented or decremented, they will assert on
// the null next/prev pointer instead of "usually working".
this->setNext(Node, nullptr);
this->setPrev(Node, nullptr);
return Node;
}
@ -433,7 +556,12 @@ public:
///
/// This should only be used immediately before freeing nodes in bulk to
/// avoid traversing the list and bringing all the nodes into cache.
void clearAndLeakNodesUnsafely() { Sentinel.reset(); }
void clearAndLeakNodesUnsafely() {
if (Head) {
Head = getTail();
this->setPrev(Head, Head);
}
}
private:
// transfer - The heart of the splice function. Move linked list nodes from
@ -442,34 +570,48 @@ private:
void transfer(iterator position, iplist &L2, iterator first, iterator last) {
assert(first != last && "Should be checked by callers");
// Position cannot be contained in the range to be transferred.
// Check for the most common mistake.
assert(position != first &&
// Check for the most common mistake.
"Insertion point can't be one of the transferred nodes");
if (position == last)
return;
if (position != last) {
// Note: we have to be careful about the case when we move the first node
// in the list. This node is the list sentinel node and we can't move it.
NodeTy *ThisSentinel = getTail();
setTail(nullptr);
NodeTy *L2Sentinel = L2.getTail();
L2.setTail(nullptr);
// Get raw hooks to the first and final nodes being transferred.
node_type *First = first.getNodePtr();
node_type *Final = (--last).getNodePtr();
// Remove [first, last) from its old position.
NodeTy *First = &*first, *Prev = this->getPrev(First);
NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
if (Prev)
this->setNext(Prev, Next);
else
L2.Head = Next;
this->setPrev(Next, Prev);
// Detach from old list/position.
node_type *Prev = this->getPrev(First);
node_type *Next = this->getNext(Final);
this->setNext(Prev, Next);
this->setPrev(Next, Prev);
// Splice [first, last) into its new position.
NodeTy *PosNext = position.getNodePtrUnchecked();
NodeTy *PosPrev = this->getPrev(PosNext);
// Splice [First, Final] into its new list/position.
Next = position.getNodePtr();
Prev = this->getPrev(Next);
this->setNext(Final, Next);
this->setPrev(First, Prev);
this->setNext(Prev, First);
this->setPrev(Next, Final);
// Fix head of list...
if (PosPrev)
this->setNext(PosPrev, First);
else
Head = First;
this->setPrev(First, PosPrev);
// Callback. Note that the nodes have moved from before-last to
// before-position.
this->transferNodesFromList(L2, first, position);
// Fix end of list...
this->setNext(Last, PosNext);
this->setPrev(PosNext, Last);
this->transferNodesFromList(L2, iterator(First), iterator(PosNext));
// Now that everything is set, restore the pointers to the list sentinels.
L2.setTail(L2Sentinel);
setTail(ThisSentinel);
}
}
public:
@ -479,6 +621,7 @@ public:
//
size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const {
if (!Head) return 0; // Don't require construction of sentinel if empty.
return std::distance(begin(), end());
}
@ -488,7 +631,7 @@ public:
return last;
}
void clear() { erase(begin(), end()); }
void clear() { if (Head) erase(begin(), end()); }
// Front and back inserters...
void push_front(NodeTy *val) { insert(begin(), val); }

View File

@ -15,8 +15,6 @@
#ifndef LLVM_ADT_ILIST_NODE_H
#define LLVM_ADT_ILIST_NODE_H
#include <llvm/ADT/PointerIntPair.h>
namespace llvm {
template<typename NodeTy>
@ -24,81 +22,46 @@ struct ilist_traits;
template <typename NodeTy> struct ilist_embedded_sentinel_traits;
template <typename NodeTy> struct ilist_half_embedded_sentinel_traits;
/// Base class for ilist nodes.
struct ilist_node_base {
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
PointerIntPair<ilist_node_base *, 1> PrevAndSentinel;
void setPrev(ilist_node_base *Prev) { PrevAndSentinel.setPointer(Prev); }
ilist_node_base *getPrev() const { return PrevAndSentinel.getPointer(); }
bool isKnownSentinel() const { return PrevAndSentinel.getInt(); }
void initializeSentinel() { PrevAndSentinel.setInt(true); }
#else
ilist_node_base *Prev = nullptr;
void setPrev(ilist_node_base *Prev) { this->Prev = Prev; }
ilist_node_base *getPrev() const { return Prev; }
bool isKnownSentinel() const { return false; }
void initializeSentinel() {}
#endif
ilist_node_base *Next = nullptr;
/// ilist_half_node - Base class that provides prev services for sentinels.
///
template<typename NodeTy>
class ilist_half_node {
friend struct ilist_traits<NodeTy>;
friend struct ilist_half_embedded_sentinel_traits<NodeTy>;
NodeTy *Prev;
protected:
NodeTy *getPrev() { return Prev; }
const NodeTy *getPrev() const { return Prev; }
void setPrev(NodeTy *P) { Prev = P; }
ilist_half_node() : Prev(nullptr) {}
};
struct ilist_node_access;
template <typename NodeTy> class ilist_iterator;
template <typename NodeTy> class ilist_sentinel;
/// Templated wrapper class.
template <typename NodeTy> class ilist_node : ilist_node_base {
/// Base class that provides next/prev services for ilist nodes.
template<typename NodeTy>
class ilist_node : private ilist_half_node<NodeTy> {
friend struct ilist_node_access;
friend struct ilist_traits<NodeTy>;
friend struct ilist_half_embedded_sentinel_traits<NodeTy>;
friend struct ilist_embedded_sentinel_traits<NodeTy>;
friend class ilist_iterator<NodeTy>;
friend class ilist_sentinel<NodeTy>;
NodeTy *Next;
NodeTy *getNext() { return Next; }
const NodeTy *getNext() const { return Next; }
void setNext(NodeTy *N) { Next = N; }
protected:
ilist_node() = default;
private:
ilist_node *getPrev() {
return static_cast<ilist_node *>(ilist_node_base::getPrev());
}
ilist_node *getNext() { return static_cast<ilist_node *>(Next); }
const ilist_node *getPrev() const {
return static_cast<ilist_node *>(ilist_node_base::getPrev());
}
const ilist_node *getNext() const { return static_cast<ilist_node *>(Next); }
void setPrev(ilist_node *N) { ilist_node_base::setPrev(N); }
void setNext(ilist_node *N) { Next = N; }
ilist_node() : Next(nullptr) {}
public:
ilist_iterator<NodeTy> getIterator() { return ilist_iterator<NodeTy>(*this); }
ilist_iterator<NodeTy> getIterator() {
// FIXME: Stop downcasting to create the iterator (potential UB).
return ilist_iterator<NodeTy>(static_cast<NodeTy *>(this));
}
ilist_iterator<const NodeTy> getIterator() const {
return ilist_iterator<const NodeTy>(*this);
// FIXME: Stop downcasting to create the iterator (potential UB).
return ilist_iterator<const NodeTy>(static_cast<const NodeTy *>(this));
}
using ilist_node_base::isKnownSentinel;
};
template <typename NodeTy> class ilist_sentinel : public ilist_node<NodeTy> {
public:
ilist_sentinel() {
ilist_node_base::initializeSentinel();
reset();
}
void reset() {
this->setPrev(this);
this->setNext(this);
}
bool empty() const { return this == this->getPrev(); }
};
/// An ilist node that can access its parent list.

View File

@ -128,66 +128,4 @@ TEST(ilistTest, UnsafeClear) {
EXPECT_EQ(6, List.back().Value);
}
struct NodeWithCallback : ilist_node<NodeWithCallback> {
int Value = 0;
bool IsInList = false;
NodeWithCallback() = default;
NodeWithCallback(int Value) : Value(Value) {}
NodeWithCallback(const NodeWithCallback &) = delete;
};
} // end namespace
namespace llvm {
template <>
struct ilist_traits<NodeWithCallback>
: public ilist_node_traits<NodeWithCallback> {
void addNodeToList(NodeWithCallback *N) { N->IsInList = true; }
void removeNodeFromList(NodeWithCallback *N) { N->IsInList = false; }
};
} // end namespace llvm
namespace {
TEST(ilistTest, addNodeToList) {
ilist<NodeWithCallback> L;
NodeWithCallback N(7);
ASSERT_FALSE(N.IsInList);
L.insert(L.begin(), &N);
ASSERT_EQ(1u, L.size());
ASSERT_EQ(&N, &*L.begin());
ASSERT_TRUE(N.IsInList);
L.remove(&N);
ASSERT_EQ(0u, L.size());
ASSERT_FALSE(N.IsInList);
}
struct PrivateNode : private ilist_node<PrivateNode> {
friend struct llvm::ilist_node_access;
int Value = 0;
PrivateNode() = default;
PrivateNode(int Value) : Value(Value) {}
PrivateNode(const PrivateNode &) = delete;
};
TEST(ilistTest, privateNode) {
// Instantiate various APIs to be sure they're callable when ilist_node is
// inherited privately.
ilist<NodeWithCallback> L;
NodeWithCallback N(7);
L.insert(L.begin(), &N);
++L.begin();
(void)*L.begin();
(void)(L.begin() == L.end());
ilist<NodeWithCallback> L2;
L2.splice(L2.end(), L);
L2.remove(&N);
}
} // end namespace