mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-13 14:46:53 +00:00
Factor out more code for computing register live-range informationfor
scheduling, and generalize is so that preserves state across scheduling regions. This fixes incorrect live-range information around terminators and labels, which are effective region boundaries. In place of looking for terminators to anchor inter-block dependencies, introduce special entry and exit scheduling units for this purpose. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64254 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
0464a1431b
commit
9e64bbb322
@ -282,6 +282,16 @@ namespace llvm {
|
||||
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
|
||||
CopyDstRC(NULL), CopySrcRC(NULL) {}
|
||||
|
||||
/// SUnit - Construct a placeholder SUnit.
|
||||
SUnit()
|
||||
: Node(0), Instr(0), OrigNode(0), NodeNum(~0u), NodeQueueId(0),
|
||||
Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
|
||||
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
|
||||
isPending(false), isAvailable(false), isScheduled(false),
|
||||
isScheduleHigh(false), isCloned(false),
|
||||
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
|
||||
CopyDstRC(NULL), CopySrcRC(NULL) {}
|
||||
|
||||
/// setNode - Assign the representative SDNode for this SUnit.
|
||||
/// This may be used during pre-regalloc scheduling.
|
||||
void setNode(SDNode *N) {
|
||||
@ -430,6 +440,8 @@ namespace llvm {
|
||||
std::vector<SUnit*> Sequence; // The schedule. Null SUnit*'s
|
||||
// represent noop instructions.
|
||||
std::vector<SUnit> SUnits; // The scheduling units.
|
||||
SUnit EntrySU; // Special node for the region entry.
|
||||
SUnit ExitSU; // Special node for the region exit.
|
||||
|
||||
explicit ScheduleDAG(MachineFunction &mf);
|
||||
|
||||
@ -446,6 +458,9 @@ namespace llvm {
|
||||
MachineBasicBlock::iterator Begin,
|
||||
MachineBasicBlock::iterator End);
|
||||
|
||||
/// EmitSchedule - Insert MachineInstrs into the MachineBasicBlock
|
||||
/// according to the order specified in Sequence.
|
||||
///
|
||||
virtual MachineBasicBlock *EmitSchedule() = 0;
|
||||
|
||||
void dumpSchedule() const;
|
||||
|
@ -94,6 +94,25 @@ namespace {
|
||||
/// HazardRec - The hazard recognizer to use.
|
||||
ScheduleHazardRecognizer *HazardRec;
|
||||
|
||||
/// Classes - For live regs that are only used in one register class in a
|
||||
/// live range, the register class. If the register is not live, the
|
||||
/// corresponding value is null. If the register is live but used in
|
||||
/// multiple register classes, the corresponding value is -1 casted to a
|
||||
/// pointer.
|
||||
const TargetRegisterClass *
|
||||
Classes[TargetRegisterInfo::FirstVirtualRegister];
|
||||
|
||||
/// RegRegs - Map registers to all their references within a live range.
|
||||
std::multimap<unsigned, MachineOperand *> RegRefs;
|
||||
|
||||
/// The index of the most recent kill (proceding bottom-up), or ~0u if
|
||||
/// the register is not live.
|
||||
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
|
||||
|
||||
/// The index of the most recent complete def (proceding bottom up), or ~0u
|
||||
/// if the register is live.
|
||||
unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
|
||||
|
||||
public:
|
||||
SchedulePostRATDList(MachineFunction &MF,
|
||||
const MachineLoopInfo &MLI,
|
||||
@ -107,10 +126,29 @@ namespace {
|
||||
delete HazardRec;
|
||||
}
|
||||
|
||||
/// StartBlock - Initialize register live-range state for scheduling in
|
||||
/// this block.
|
||||
///
|
||||
void StartBlock(MachineBasicBlock *BB);
|
||||
|
||||
/// Schedule - Schedule the instruction range using list scheduling.
|
||||
///
|
||||
void Schedule();
|
||||
|
||||
/// Observe - Update liveness information to account for the current
|
||||
/// instruction, which will not be scheduled.
|
||||
///
|
||||
void Observe(MachineInstr *MI);
|
||||
|
||||
/// FinishBlock - Clean up register live-range state.
|
||||
///
|
||||
void FinishBlock();
|
||||
|
||||
private:
|
||||
void PrescanInstruction(MachineInstr *MI);
|
||||
void ScanInstruction(MachineInstr *MI, unsigned Count);
|
||||
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
|
||||
void ReleaseSuccessors(SUnit *SU);
|
||||
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
||||
void ListScheduleTopDown();
|
||||
bool BreakAntiDependencies();
|
||||
@ -173,6 +211,19 @@ namespace {
|
||||
};
|
||||
}
|
||||
|
||||
/// isSchedulingBoundary - Test if the given instruction should be
|
||||
/// considered a scheduling boundary. This primarily includes labels
|
||||
/// and terminators.
|
||||
///
|
||||
static bool isSchedulingBoundary(const MachineInstr *MI,
|
||||
const MachineFunction &MF) {
|
||||
// Terminators and labels can't be scheduled around.
|
||||
if (MI->getDesc().isTerminator() || MI->isLabel())
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
|
||||
DOUT << "PostRAScheduler\n";
|
||||
|
||||
@ -187,131 +238,51 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
|
||||
// Loop over all of the basic blocks
|
||||
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
|
||||
MBB != MBBe; ++MBB) {
|
||||
// Initialize register live-range state for scheduling in this block.
|
||||
Scheduler.StartBlock(MBB);
|
||||
|
||||
// Schedule each sequence of instructions not interrupted by a label
|
||||
// or anything else that effectively needs to shut down scheduling.
|
||||
MachineBasicBlock::iterator Current = MBB->end(), Top = MBB->begin();
|
||||
for (MachineBasicBlock::iterator I = Current; I != Top; ) {
|
||||
MachineInstr *MI = --I;
|
||||
if (MI->getDesc().isTerminator() || MI->isLabel()) {
|
||||
Scheduler.Run(0, MBB, next(I), Current);
|
||||
Scheduler.EmitSchedule();
|
||||
Current = I;
|
||||
MachineBasicBlock::iterator Current = MBB->end();
|
||||
for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
|
||||
MachineInstr *MI = prior(I);
|
||||
if (isSchedulingBoundary(MI, Fn)) {
|
||||
if (I != Current) {
|
||||
Scheduler.Run(0, MBB, I, Current);
|
||||
Scheduler.EmitSchedule();
|
||||
}
|
||||
Scheduler.Observe(MI);
|
||||
Current = MI;
|
||||
}
|
||||
I = MI;
|
||||
}
|
||||
|
||||
Scheduler.Run(0, MBB, Top, Current);
|
||||
Scheduler.Run(0, MBB, MBB->begin(), Current);
|
||||
Scheduler.EmitSchedule();
|
||||
|
||||
// Clean up register live-range state.
|
||||
Scheduler.FinishBlock();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Schedule - Schedule the DAG using list scheduling.
|
||||
void SchedulePostRATDList::Schedule() {
|
||||
DOUT << "********** List Scheduling **********\n";
|
||||
|
||||
// Build the scheduling graph.
|
||||
BuildSchedGraph();
|
||||
|
||||
if (EnableAntiDepBreaking) {
|
||||
if (BreakAntiDependencies()) {
|
||||
// We made changes. Update the dependency graph.
|
||||
// Theoretically we could update the graph in place:
|
||||
// When a live range is changed to use a different register, remove
|
||||
// the def's anti-dependence *and* output-dependence edges due to
|
||||
// that register, and add new anti-dependence and output-dependence
|
||||
// edges based on the next live range of the register.
|
||||
SUnits.clear();
|
||||
BuildSchedGraph();
|
||||
}
|
||||
}
|
||||
|
||||
AvailableQueue.initNodes(SUnits);
|
||||
|
||||
ListScheduleTopDown();
|
||||
|
||||
AvailableQueue.releaseState();
|
||||
}
|
||||
|
||||
/// getInstrOperandRegClass - Return register class of the operand of an
|
||||
/// instruction of the specified TargetInstrDesc.
|
||||
static const TargetRegisterClass*
|
||||
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
|
||||
const TargetInstrDesc &II, unsigned Op) {
|
||||
if (Op >= II.getNumOperands())
|
||||
return NULL;
|
||||
if (II.OpInfo[Op].isLookupPtrRegClass())
|
||||
return TRI->getPointerRegClass();
|
||||
return TRI->getRegClass(II.OpInfo[Op].RegClass);
|
||||
}
|
||||
|
||||
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
|
||||
/// critical path.
|
||||
static SDep *CriticalPathStep(SUnit *SU) {
|
||||
SDep *Next = 0;
|
||||
unsigned NextDepth = 0;
|
||||
// Find the predecessor edge with the greatest depth.
|
||||
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
||||
P != PE; ++P) {
|
||||
SUnit *PredSU = P->getSUnit();
|
||||
unsigned PredLatency = P->getLatency();
|
||||
unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
|
||||
// In the case of a latency tie, prefer an anti-dependency edge over
|
||||
// other types of edges.
|
||||
if (NextDepth < PredTotalLatency ||
|
||||
(NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
|
||||
NextDepth = PredTotalLatency;
|
||||
Next = &*P;
|
||||
}
|
||||
}
|
||||
return Next;
|
||||
}
|
||||
|
||||
/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
|
||||
/// of the ScheduleDAG and break them by renaming registers.
|
||||
/// StartBlock - Initialize register live-range state for scheduling in
|
||||
/// this block.
|
||||
///
|
||||
bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
// The code below assumes that there is at least one instruction,
|
||||
// so just duck out immediately if the block is empty.
|
||||
if (SUnits.empty()) return false;
|
||||
void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
|
||||
// Call the superclass.
|
||||
ScheduleDAGInstrs::StartBlock(BB);
|
||||
|
||||
// Find the node at the bottom of the critical path.
|
||||
SUnit *Max = 0;
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
SUnit *SU = &SUnits[i];
|
||||
if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
|
||||
Max = SU;
|
||||
}
|
||||
// Clear out the register class data.
|
||||
std::fill(Classes, array_endof(Classes),
|
||||
static_cast<const TargetRegisterClass *>(0));
|
||||
|
||||
DOUT << "Critical path has total latency "
|
||||
<< (Max->getDepth() + Max->Latency) << "\n";
|
||||
|
||||
// Track progress along the critical path through the SUnit graph as we walk
|
||||
// the instructions.
|
||||
SUnit *CriticalPathSU = Max;
|
||||
MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
|
||||
|
||||
// For live regs that are only used in one register class in a live range,
|
||||
// the register class. If the register is not live, the corresponding value
|
||||
// is null. If the register is live but used in multiple register classes,
|
||||
// the corresponding value is -1 casted to a pointer.
|
||||
const TargetRegisterClass *
|
||||
Classes[TargetRegisterInfo::FirstVirtualRegister] = {};
|
||||
|
||||
// Map registers to all their references within a live range.
|
||||
std::multimap<unsigned, MachineOperand *> RegRefs;
|
||||
|
||||
// The index of the most recent kill (proceding bottom-up), or ~0u if
|
||||
// the register is not live.
|
||||
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
|
||||
// Initialize the indices to indicate that no registers are live.
|
||||
std::fill(KillIndices, array_endof(KillIndices), ~0u);
|
||||
// The index of the most recent complete def (proceding bottom up), or ~0u if
|
||||
// the register is live.
|
||||
unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
|
||||
std::fill(DefIndices, array_endof(DefIndices), BB->size());
|
||||
|
||||
// Determine the live-out physregs for this block.
|
||||
if (BB->back().getDesc().isReturn())
|
||||
if (!BB->empty() && BB->back().getDesc().isReturn())
|
||||
// In a return block, examine the function live-out regs.
|
||||
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
|
||||
E = MRI.liveout_end(); I != E; ++I) {
|
||||
@ -368,6 +339,217 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
DefIndices[AliasReg] = ~0u;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Schedule - Schedule the instruction range using list scheduling.
|
||||
///
|
||||
void SchedulePostRATDList::Schedule() {
|
||||
DOUT << "********** List Scheduling **********\n";
|
||||
|
||||
// Build the scheduling graph.
|
||||
BuildSchedGraph();
|
||||
|
||||
if (EnableAntiDepBreaking) {
|
||||
if (BreakAntiDependencies()) {
|
||||
// We made changes. Update the dependency graph.
|
||||
// Theoretically we could update the graph in place:
|
||||
// When a live range is changed to use a different register, remove
|
||||
// the def's anti-dependence *and* output-dependence edges due to
|
||||
// that register, and add new anti-dependence and output-dependence
|
||||
// edges based on the next live range of the register.
|
||||
SUnits.clear();
|
||||
EntrySU = SUnit();
|
||||
ExitSU = SUnit();
|
||||
BuildSchedGraph();
|
||||
}
|
||||
}
|
||||
|
||||
AvailableQueue.initNodes(SUnits);
|
||||
|
||||
ListScheduleTopDown();
|
||||
|
||||
AvailableQueue.releaseState();
|
||||
}
|
||||
|
||||
/// Observe - Update liveness information to account for the current
|
||||
/// instruction, which will not be scheduled.
|
||||
///
|
||||
void SchedulePostRATDList::Observe(MachineInstr *MI) {
|
||||
PrescanInstruction(MI);
|
||||
ScanInstruction(MI, 0);
|
||||
}
|
||||
|
||||
/// FinishBlock - Clean up register live-range state.
|
||||
///
|
||||
void SchedulePostRATDList::FinishBlock() {
|
||||
RegRefs.clear();
|
||||
|
||||
// Call the superclass.
|
||||
ScheduleDAGInstrs::FinishBlock();
|
||||
}
|
||||
|
||||
/// getInstrOperandRegClass - Return register class of the operand of an
|
||||
/// instruction of the specified TargetInstrDesc.
|
||||
static const TargetRegisterClass*
|
||||
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
|
||||
const TargetInstrDesc &II, unsigned Op) {
|
||||
if (Op >= II.getNumOperands())
|
||||
return NULL;
|
||||
if (II.OpInfo[Op].isLookupPtrRegClass())
|
||||
return TRI->getPointerRegClass();
|
||||
return TRI->getRegClass(II.OpInfo[Op].RegClass);
|
||||
}
|
||||
|
||||
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
|
||||
/// critical path.
|
||||
static SDep *CriticalPathStep(SUnit *SU) {
|
||||
SDep *Next = 0;
|
||||
unsigned NextDepth = 0;
|
||||
// Find the predecessor edge with the greatest depth.
|
||||
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
||||
P != PE; ++P) {
|
||||
SUnit *PredSU = P->getSUnit();
|
||||
unsigned PredLatency = P->getLatency();
|
||||
unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
|
||||
// In the case of a latency tie, prefer an anti-dependency edge over
|
||||
// other types of edges.
|
||||
if (NextDepth < PredTotalLatency ||
|
||||
(NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
|
||||
NextDepth = PredTotalLatency;
|
||||
Next = &*P;
|
||||
}
|
||||
}
|
||||
return Next;
|
||||
}
|
||||
|
||||
void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
|
||||
// Scan the register operands for this instruction and update
|
||||
// Classes and RegRefs.
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg()) continue;
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0) continue;
|
||||
const TargetRegisterClass *NewRC =
|
||||
getInstrOperandRegClass(TRI, MI->getDesc(), i);
|
||||
|
||||
// For now, only allow the register to be changed if its register
|
||||
// class is consistent across all uses.
|
||||
if (!Classes[Reg] && NewRC)
|
||||
Classes[Reg] = NewRC;
|
||||
else if (!NewRC || Classes[Reg] != NewRC)
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
|
||||
// Now check for aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
// If an alias of the reg is used during the live range, give up.
|
||||
// Note that this allows us to skip checking if AntiDepReg
|
||||
// overlaps with any of the aliases, among other things.
|
||||
unsigned AliasReg = *Alias;
|
||||
if (Classes[AliasReg]) {
|
||||
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
}
|
||||
}
|
||||
|
||||
// If we're still willing to consider this register, note the reference.
|
||||
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
|
||||
RegRefs.insert(std::make_pair(Reg, &MO));
|
||||
}
|
||||
}
|
||||
|
||||
void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
|
||||
unsigned Count) {
|
||||
// Update liveness.
|
||||
// Proceding upwards, registers that are defed but not used in this
|
||||
// instruction are now dead.
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg()) continue;
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0) continue;
|
||||
if (!MO.isDef()) continue;
|
||||
// Ignore two-addr defs.
|
||||
if (MI->isRegReDefinedByTwoAddr(i)) continue;
|
||||
|
||||
DefIndices[Reg] = Count;
|
||||
KillIndices[Reg] = ~0u;
|
||||
Classes[Reg] = 0;
|
||||
RegRefs.erase(Reg);
|
||||
// Repeat, for all subregs.
|
||||
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
||||
*Subreg; ++Subreg) {
|
||||
unsigned SubregReg = *Subreg;
|
||||
DefIndices[SubregReg] = Count;
|
||||
KillIndices[SubregReg] = ~0u;
|
||||
Classes[SubregReg] = 0;
|
||||
RegRefs.erase(SubregReg);
|
||||
}
|
||||
// Conservatively mark super-registers as unusable.
|
||||
for (const unsigned *Super = TRI->getSuperRegisters(Reg);
|
||||
*Super; ++Super) {
|
||||
unsigned SuperReg = *Super;
|
||||
Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg()) continue;
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0) continue;
|
||||
if (!MO.isUse()) continue;
|
||||
|
||||
const TargetRegisterClass *NewRC =
|
||||
getInstrOperandRegClass(TRI, MI->getDesc(), i);
|
||||
|
||||
// For now, only allow the register to be changed if its register
|
||||
// class is consistent across all uses.
|
||||
if (!Classes[Reg] && NewRC)
|
||||
Classes[Reg] = NewRC;
|
||||
else if (!NewRC || Classes[Reg] != NewRC)
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
|
||||
RegRefs.insert(std::make_pair(Reg, &MO));
|
||||
|
||||
// It wasn't previously live but now it is, this is a kill.
|
||||
if (KillIndices[Reg] == ~0u) {
|
||||
KillIndices[Reg] = Count;
|
||||
DefIndices[Reg] = ~0u;
|
||||
}
|
||||
// Repeat, for all aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
unsigned AliasReg = *Alias;
|
||||
if (KillIndices[AliasReg] == ~0u) {
|
||||
KillIndices[AliasReg] = Count;
|
||||
DefIndices[AliasReg] = ~0u;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
|
||||
/// of the ScheduleDAG and break them by renaming registers.
|
||||
///
|
||||
bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
// The code below assumes that there is at least one instruction,
|
||||
// so just duck out immediately if the block is empty.
|
||||
if (SUnits.empty()) return false;
|
||||
|
||||
// Find the node at the bottom of the critical path.
|
||||
SUnit *Max = 0;
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
SUnit *SU = &SUnits[i];
|
||||
if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
|
||||
Max = SU;
|
||||
}
|
||||
|
||||
DOUT << "Critical path has total latency "
|
||||
<< (Max->getDepth() + Max->Latency) << "\n";
|
||||
|
||||
// Track progress along the critical path through the SUnit graph as we walk
|
||||
// the instructions.
|
||||
SUnit *CriticalPathSU = Max;
|
||||
MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
|
||||
|
||||
// Consider this pattern:
|
||||
// A = ...
|
||||
@ -481,43 +663,19 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
}
|
||||
}
|
||||
|
||||
// Scan the register operands for this instruction and update
|
||||
// Classes and RegRefs.
|
||||
PrescanInstruction(MI);
|
||||
|
||||
// If this instruction has a use of AntiDepReg, breaking it
|
||||
// is invalid.
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg()) continue;
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0) continue;
|
||||
const TargetRegisterClass *NewRC =
|
||||
getInstrOperandRegClass(TRI, MI->getDesc(), i);
|
||||
|
||||
// If this instruction has a use of AntiDepReg, breaking it
|
||||
// is invalid.
|
||||
if (MO.isUse() && AntiDepReg == Reg)
|
||||
if (MO.isUse() && AntiDepReg == Reg) {
|
||||
AntiDepReg = 0;
|
||||
|
||||
// For now, only allow the register to be changed if its register
|
||||
// class is consistent across all uses.
|
||||
if (!Classes[Reg] && NewRC)
|
||||
Classes[Reg] = NewRC;
|
||||
else if (!NewRC || Classes[Reg] != NewRC)
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
|
||||
// Now check for aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
// If an alias of the reg is used during the live range, give up.
|
||||
// Note that this allows us to skip checking if AntiDepReg
|
||||
// overlaps with any of the aliases, among other things.
|
||||
unsigned AliasReg = *Alias;
|
||||
if (Classes[AliasReg]) {
|
||||
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// If we're still willing to consider this register, note the reference.
|
||||
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
|
||||
RegRefs.insert(std::make_pair(Reg, &MO));
|
||||
}
|
||||
|
||||
// Determine AntiDepReg's register class, if it is live and is
|
||||
@ -584,71 +742,7 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
}
|
||||
}
|
||||
|
||||
// Update liveness.
|
||||
// Proceding upwards, registers that are defed but not used in this
|
||||
// instruction are now dead.
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg()) continue;
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0) continue;
|
||||
if (!MO.isDef()) continue;
|
||||
// Ignore two-addr defs.
|
||||
if (MI->isRegReDefinedByTwoAddr(i)) continue;
|
||||
|
||||
DefIndices[Reg] = Count;
|
||||
KillIndices[Reg] = ~0u;
|
||||
Classes[Reg] = 0;
|
||||
RegRefs.erase(Reg);
|
||||
// Repeat, for all subregs.
|
||||
for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
|
||||
*Subreg; ++Subreg) {
|
||||
unsigned SubregReg = *Subreg;
|
||||
DefIndices[SubregReg] = Count;
|
||||
KillIndices[SubregReg] = ~0u;
|
||||
Classes[SubregReg] = 0;
|
||||
RegRefs.erase(SubregReg);
|
||||
}
|
||||
// Conservatively mark super-registers as unusable.
|
||||
for (const unsigned *Super = TRI->getSuperRegisters(Reg);
|
||||
*Super; ++Super) {
|
||||
unsigned SuperReg = *Super;
|
||||
Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg()) continue;
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0) continue;
|
||||
if (!MO.isUse()) continue;
|
||||
|
||||
const TargetRegisterClass *NewRC =
|
||||
getInstrOperandRegClass(TRI, MI->getDesc(), i);
|
||||
|
||||
// For now, only allow the register to be changed if its register
|
||||
// class is consistent across all uses.
|
||||
if (!Classes[Reg] && NewRC)
|
||||
Classes[Reg] = NewRC;
|
||||
else if (!NewRC || Classes[Reg] != NewRC)
|
||||
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
||||
|
||||
RegRefs.insert(std::make_pair(Reg, &MO));
|
||||
|
||||
// It wasn't previously live but now it is, this is a kill.
|
||||
if (KillIndices[Reg] == ~0u) {
|
||||
KillIndices[Reg] = Count;
|
||||
DefIndices[Reg] = ~0u;
|
||||
}
|
||||
// Repeat, for all aliases.
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
unsigned AliasReg = *Alias;
|
||||
if (KillIndices[AliasReg] == ~0u) {
|
||||
KillIndices[AliasReg] = Count;
|
||||
DefIndices[AliasReg] = ~0u;
|
||||
}
|
||||
}
|
||||
}
|
||||
ScanInstruction(MI, Count);
|
||||
}
|
||||
assert(Count == ~0u && "Count mismatch!");
|
||||
|
||||
@ -679,9 +773,17 @@ void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
|
||||
// their latencies.
|
||||
SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
|
||||
|
||||
if (SuccSU->NumPredsLeft == 0) {
|
||||
// If all the node's predecessors are scheduled, this node is ready
|
||||
// to be scheduled. Ignore the special ExitSU node.
|
||||
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
|
||||
PendingQueue.push_back(SuccSU);
|
||||
}
|
||||
}
|
||||
|
||||
/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
|
||||
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
ReleaseSucc(SU, &*I);
|
||||
}
|
||||
|
||||
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
||||
@ -695,11 +797,7 @@ void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
|
||||
SU->setDepthToAtLeast(CurCycle);
|
||||
|
||||
// Top down: release successors.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
ReleaseSucc(SU, &*I);
|
||||
|
||||
ReleaseSuccessors(SU);
|
||||
SU->isScheduled = true;
|
||||
AvailableQueue.ScheduledNode(SU);
|
||||
}
|
||||
@ -709,6 +807,9 @@ void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
void SchedulePostRATDList::ListScheduleTopDown() {
|
||||
unsigned CurCycle = 0;
|
||||
|
||||
// Release any successors of the special Entry node.
|
||||
ReleaseSuccessors(&EntrySU);
|
||||
|
||||
// All leaves to Available queue.
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
// It is available if it has no predecessors.
|
||||
@ -717,7 +818,7 @@ void SchedulePostRATDList::ListScheduleTopDown() {
|
||||
SUnits[i].isAvailable = true;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// While Available queue is not empty, grab the node with the highest
|
||||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
|
@ -28,7 +28,8 @@ ScheduleDAG::ScheduleDAG(MachineFunction &mf)
|
||||
TRI(TM.getRegisterInfo()),
|
||||
TLI(TM.getTargetLowering()),
|
||||
MF(mf), MRI(mf.getRegInfo()),
|
||||
ConstPool(MF.getConstantPool()) {
|
||||
ConstPool(MF.getConstantPool()),
|
||||
EntrySU(), ExitSU() {
|
||||
}
|
||||
|
||||
ScheduleDAG::~ScheduleDAG() {}
|
||||
@ -58,6 +59,8 @@ void ScheduleDAG::Run(SelectionDAG *dag, MachineBasicBlock *bb,
|
||||
BB = bb;
|
||||
Begin = begin;
|
||||
End = end;
|
||||
EntrySU = SUnit();
|
||||
ExitSU = SUnit();
|
||||
|
||||
Schedule();
|
||||
|
||||
|
@ -15,86 +15,22 @@
|
||||
#define DEBUG_TYPE "sched-instrs"
|
||||
#include "ScheduleDAGInstrs.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/CodeGen/MachineDominators.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineLoopInfo.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/CodeGen/PseudoSourceValue.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetRegisterInfo.h"
|
||||
#include "llvm/Target/TargetSubtarget.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include <map>
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
class VISIBILITY_HIDDEN LoopDependencies {
|
||||
const MachineLoopInfo &MLI;
|
||||
const MachineDominatorTree &MDT;
|
||||
|
||||
public:
|
||||
typedef std::map<unsigned, std::pair<const MachineOperand *, unsigned> >
|
||||
LoopDeps;
|
||||
LoopDeps Deps;
|
||||
|
||||
LoopDependencies(const MachineLoopInfo &mli,
|
||||
const MachineDominatorTree &mdt) :
|
||||
MLI(mli), MDT(mdt) {}
|
||||
|
||||
void VisitLoop(const MachineLoop *Loop) {
|
||||
Deps.clear();
|
||||
MachineBasicBlock *Header = Loop->getHeader();
|
||||
SmallSet<unsigned, 8> LoopLiveIns;
|
||||
for (MachineBasicBlock::livein_iterator LI = Header->livein_begin(),
|
||||
LE = Header->livein_end(); LI != LE; ++LI)
|
||||
LoopLiveIns.insert(*LI);
|
||||
|
||||
const MachineDomTreeNode *Node = MDT.getNode(Header);
|
||||
const MachineBasicBlock *MBB = Node->getBlock();
|
||||
assert(Loop->contains(MBB) &&
|
||||
"Loop does not contain header!");
|
||||
VisitRegion(Node, MBB, Loop, LoopLiveIns);
|
||||
}
|
||||
|
||||
private:
|
||||
void VisitRegion(const MachineDomTreeNode *Node,
|
||||
const MachineBasicBlock *MBB,
|
||||
const MachineLoop *Loop,
|
||||
const SmallSet<unsigned, 8> &LoopLiveIns) {
|
||||
unsigned Count = 0;
|
||||
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
|
||||
I != E; ++I, ++Count) {
|
||||
const MachineInstr *MI = I;
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
const MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg() || !MO.isUse())
|
||||
continue;
|
||||
unsigned MOReg = MO.getReg();
|
||||
if (LoopLiveIns.count(MOReg))
|
||||
Deps.insert(std::make_pair(MOReg, std::make_pair(&MO, Count)));
|
||||
}
|
||||
}
|
||||
|
||||
const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
|
||||
for (std::vector<MachineDomTreeNode*>::const_iterator I =
|
||||
Children.begin(), E = Children.end(); I != E; ++I) {
|
||||
const MachineDomTreeNode *ChildNode = *I;
|
||||
MachineBasicBlock *ChildBlock = ChildNode->getBlock();
|
||||
if (Loop->contains(ChildBlock))
|
||||
VisitRegion(ChildNode, ChildBlock, Loop, LoopLiveIns);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
|
||||
const MachineLoopInfo &mli,
|
||||
const MachineDominatorTree &mdt)
|
||||
: ScheduleDAG(mf), MLI(mli), MDT(mdt) {}
|
||||
: ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {}
|
||||
|
||||
/// getOpcode - If this is an Instruction or a ConstantExpr, return the
|
||||
/// opcode value. Otherwise return UserOp1.
|
||||
@ -172,7 +108,20 @@ static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) {
|
||||
return V;
|
||||
}
|
||||
|
||||
void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
|
||||
if (MachineLoop *ML = MLI.getLoopFor(BB))
|
||||
if (BB == ML->getLoopLatch()) {
|
||||
MachineBasicBlock *Header = ML->getHeader();
|
||||
for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
|
||||
E = Header->livein_end(); I != E; ++I)
|
||||
LoopLiveInRegs.insert(*I);
|
||||
LoopRegs.VisitLoop(ML);
|
||||
}
|
||||
}
|
||||
|
||||
void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
// We'll be allocating one SUnit for each instruction, plus one for
|
||||
// the region exit node.
|
||||
SUnits.reserve(BB->size());
|
||||
|
||||
// We build scheduling units by walking a block's instruction list from bottom
|
||||
@ -189,30 +138,6 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
std::map<const Value *, SUnit *> MemDefs;
|
||||
std::map<const Value *, std::vector<SUnit *> > MemUses;
|
||||
|
||||
// If we have an SUnit which is representing a terminator instruction, we
|
||||
// can use it as a place-holder successor for inter-block dependencies.
|
||||
SUnit *Terminator = 0;
|
||||
|
||||
// Terminators can perform control transfers, we we need to make sure that
|
||||
// all the work of the block is done before the terminator. Labels can
|
||||
// mark points of interest for various types of meta-data (eg. EH data),
|
||||
// and we need to make sure nothing is scheduled around them.
|
||||
SUnit *SchedulingBarrier = 0;
|
||||
|
||||
LoopDependencies LoopRegs(MLI, MDT);
|
||||
|
||||
// Track which regs are live into a loop, to help guide back-edge-aware
|
||||
// scheduling.
|
||||
SmallSet<unsigned, 8> LoopLiveInRegs;
|
||||
if (MachineLoop *ML = MLI.getLoopFor(BB))
|
||||
if (BB == ML->getLoopLatch()) {
|
||||
MachineBasicBlock *Header = ML->getHeader();
|
||||
for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
|
||||
E = Header->livein_end(); I != E; ++I)
|
||||
LoopLiveInRegs.insert(*I);
|
||||
LoopRegs.VisitLoop(ML);
|
||||
}
|
||||
|
||||
// Check to see if the scheduler cares about latencies.
|
||||
bool UnitLatencies = ForceUnitLatencies();
|
||||
|
||||
@ -220,10 +145,14 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
unsigned SpecialAddressLatency =
|
||||
TM.getSubtarget<TargetSubtarget>().getSpecialAddressLatency();
|
||||
|
||||
// Walk the list of instructions, from bottom moving up.
|
||||
for (MachineBasicBlock::iterator MII = End, MIE = Begin;
|
||||
MII != MIE; --MII) {
|
||||
MachineInstr *MI = prior(MII);
|
||||
const TargetInstrDesc &TID = MI->getDesc();
|
||||
assert(!TID.isTerminator() && !MI->isLabel() &&
|
||||
"Cannot schedule terminators or labels!");
|
||||
// Create the SUnit for this MI.
|
||||
SUnit *SU = NewSUnit(MI);
|
||||
|
||||
// Assign the Latency field of SU using target-provided information.
|
||||
@ -298,8 +227,7 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
|
||||
// If a def is going to wrap back around to the top of the loop,
|
||||
// backschedule it.
|
||||
// TODO: Blocks in loops without terminators can benefit too.
|
||||
if (!UnitLatencies && Terminator && DefList.empty()) {
|
||||
if (!UnitLatencies && DefList.empty()) {
|
||||
LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
|
||||
if (I != LoopRegs.Deps.end()) {
|
||||
const MachineOperand *UseMO = I->second.first;
|
||||
@ -323,10 +251,10 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
// scheduling region.
|
||||
Latency -= std::min(Latency, Count);
|
||||
// Add the artifical edge.
|
||||
Terminator->addPred(SDep(SU, SDep::Order, Latency,
|
||||
/*Reg=*/0, /*isNormalMemory=*/false,
|
||||
/*isMustAlias=*/false,
|
||||
/*isArtificial=*/true));
|
||||
ExitSU.addPred(SDep(SU, SDep::Order, Latency,
|
||||
/*Reg=*/0, /*isNormalMemory=*/false,
|
||||
/*isMustAlias=*/false,
|
||||
/*isArtificial=*/true));
|
||||
} else if (SpecialAddressLatency > 0 &&
|
||||
UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
|
||||
// The entire loop body is within the current scheduling region
|
||||
@ -355,7 +283,7 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
// after stack slots are lowered to actual addresses.
|
||||
// TODO: Use an AliasAnalysis and do real alias-analysis queries, and
|
||||
// produce more precise dependence information.
|
||||
if (TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) {
|
||||
if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
|
||||
new_chain:
|
||||
// This is the conservative case. Add dependencies on all memory
|
||||
// references.
|
||||
@ -379,7 +307,7 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
// See if it is known to just have a single memory reference.
|
||||
MachineInstr *ChainMI = Chain->getInstr();
|
||||
const TargetInstrDesc &ChainTID = ChainMI->getDesc();
|
||||
if (!ChainTID.isCall() && !ChainTID.isTerminator() &&
|
||||
if (!ChainTID.isCall() &&
|
||||
!ChainTID.hasUnmodeledSideEffects() &&
|
||||
ChainMI->hasOneMemOperand() &&
|
||||
!ChainMI->memoperands_begin()->isVolatile() &&
|
||||
@ -452,28 +380,6 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
PendingLoads.push_back(SU);
|
||||
}
|
||||
}
|
||||
|
||||
// Add chain edges from terminators and labels to ensure that no
|
||||
// instructions are scheduled past them.
|
||||
if (SchedulingBarrier && SU->Succs.empty())
|
||||
SchedulingBarrier->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
// If we encounter a mid-block label, we need to go back and add
|
||||
// dependencies on SUnits we've already processed to prevent the
|
||||
// label from moving downward.
|
||||
if (MI->isLabel())
|
||||
for (SUnit *I = SU; I != &SUnits[0]; --I) {
|
||||
SUnit *SuccSU = SU-1;
|
||||
SuccSU->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
MachineInstr *SuccMI = SuccSU->getInstr();
|
||||
if (SuccMI->getDesc().isTerminator() || SuccMI->isLabel())
|
||||
break;
|
||||
}
|
||||
// If this instruction obstructs all scheduling, remember it.
|
||||
if (TID.isTerminator() || MI->isLabel())
|
||||
SchedulingBarrier = SU;
|
||||
// If this instruction is a terminator, remember it.
|
||||
if (TID.isTerminator())
|
||||
Terminator = SU;
|
||||
}
|
||||
|
||||
for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
|
||||
@ -483,6 +389,10 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
|
||||
PendingLoads.clear();
|
||||
}
|
||||
|
||||
void ScheduleDAGInstrs::FinishBlock() {
|
||||
// Nothing to do.
|
||||
}
|
||||
|
||||
void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
|
||||
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
|
||||
|
||||
@ -505,7 +415,12 @@ void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
|
||||
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
|
||||
std::string s;
|
||||
raw_string_ostream oss(s);
|
||||
SU->getInstr()->print(oss);
|
||||
if (SU == &EntrySU)
|
||||
oss << "<entry>";
|
||||
else if (SU == &ExitSU)
|
||||
oss << "<exit>";
|
||||
else
|
||||
SU->getInstr()->print(oss);
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
@ -531,5 +446,10 @@ MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
|
||||
BB->insert(End, SU->getInstr());
|
||||
}
|
||||
|
||||
// Update the Begin iterator, as the first instruction in the block
|
||||
// may have been scheduled later.
|
||||
if (!Sequence.empty())
|
||||
Begin = Sequence[0]->getInstr();
|
||||
|
||||
return BB;
|
||||
}
|
||||
|
@ -15,14 +15,86 @@
|
||||
#ifndef SCHEDULEDAGINSTRS_H
|
||||
#define SCHEDULEDAGINSTRS_H
|
||||
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/CodeGen/MachineDominators.h"
|
||||
#include "llvm/CodeGen/MachineLoopInfo.h"
|
||||
#include "llvm/CodeGen/ScheduleDAG.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Target/TargetRegisterInfo.h"
|
||||
#include <map>
|
||||
|
||||
namespace llvm {
|
||||
class MachineLoopInfo;
|
||||
class MachineDominatorTree;
|
||||
|
||||
class ScheduleDAGInstrs : public ScheduleDAG {
|
||||
/// LoopDependencies - This class analyzes loop-oriented register
|
||||
/// dependencies, which are used to guide scheduling decisions.
|
||||
/// For example, loop induction variable increments should be
|
||||
/// scheduled as soon as possible after the variable's last use.
|
||||
///
|
||||
class VISIBILITY_HIDDEN LoopDependencies {
|
||||
const MachineLoopInfo &MLI;
|
||||
const MachineDominatorTree &MDT;
|
||||
|
||||
public:
|
||||
typedef std::map<unsigned, std::pair<const MachineOperand *, unsigned> >
|
||||
LoopDeps;
|
||||
LoopDeps Deps;
|
||||
|
||||
LoopDependencies(const MachineLoopInfo &mli,
|
||||
const MachineDominatorTree &mdt) :
|
||||
MLI(mli), MDT(mdt) {}
|
||||
|
||||
/// VisitLoop - Clear out any previous state and analyze the given loop.
|
||||
///
|
||||
void VisitLoop(const MachineLoop *Loop) {
|
||||
Deps.clear();
|
||||
MachineBasicBlock *Header = Loop->getHeader();
|
||||
SmallSet<unsigned, 8> LoopLiveIns;
|
||||
for (MachineBasicBlock::livein_iterator LI = Header->livein_begin(),
|
||||
LE = Header->livein_end(); LI != LE; ++LI)
|
||||
LoopLiveIns.insert(*LI);
|
||||
|
||||
const MachineDomTreeNode *Node = MDT.getNode(Header);
|
||||
const MachineBasicBlock *MBB = Node->getBlock();
|
||||
assert(Loop->contains(MBB) &&
|
||||
"Loop does not contain header!");
|
||||
VisitRegion(Node, MBB, Loop, LoopLiveIns);
|
||||
}
|
||||
|
||||
private:
|
||||
void VisitRegion(const MachineDomTreeNode *Node,
|
||||
const MachineBasicBlock *MBB,
|
||||
const MachineLoop *Loop,
|
||||
const SmallSet<unsigned, 8> &LoopLiveIns) {
|
||||
unsigned Count = 0;
|
||||
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
|
||||
I != E; ++I, ++Count) {
|
||||
const MachineInstr *MI = I;
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
const MachineOperand &MO = MI->getOperand(i);
|
||||
if (!MO.isReg() || !MO.isUse())
|
||||
continue;
|
||||
unsigned MOReg = MO.getReg();
|
||||
if (LoopLiveIns.count(MOReg))
|
||||
Deps.insert(std::make_pair(MOReg, std::make_pair(&MO, Count)));
|
||||
}
|
||||
}
|
||||
|
||||
const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
|
||||
for (std::vector<MachineDomTreeNode*>::const_iterator I =
|
||||
Children.begin(), E = Children.end(); I != E; ++I) {
|
||||
const MachineDomTreeNode *ChildNode = *I;
|
||||
MachineBasicBlock *ChildBlock = ChildNode->getBlock();
|
||||
if (Loop->contains(ChildBlock))
|
||||
VisitRegion(ChildNode, ChildBlock, Loop, LoopLiveIns);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of
|
||||
/// MachineInstrs.
|
||||
class VISIBILITY_HIDDEN ScheduleDAGInstrs : public ScheduleDAG {
|
||||
const MachineLoopInfo &MLI;
|
||||
const MachineDominatorTree &MDT;
|
||||
|
||||
@ -38,6 +110,15 @@ namespace llvm {
|
||||
/// to minimize construction/destruction.
|
||||
std::vector<SUnit *> PendingLoads;
|
||||
|
||||
/// LoopRegs - Track which registers are used for loop-carried dependencies.
|
||||
///
|
||||
LoopDependencies LoopRegs;
|
||||
|
||||
/// LoopLiveInRegs - Track which regs are live into a loop, to help guide
|
||||
/// back-edge-aware scheduling.
|
||||
///
|
||||
SmallSet<unsigned, 8> LoopLiveInRegs;
|
||||
|
||||
public:
|
||||
explicit ScheduleDAGInstrs(MachineFunction &mf,
|
||||
const MachineLoopInfo &mli,
|
||||
@ -68,11 +149,19 @@ namespace llvm {
|
||||
|
||||
virtual MachineBasicBlock *EmitSchedule();
|
||||
|
||||
/// StartBlock - Prepare to perform scheduling in the given block.
|
||||
///
|
||||
virtual void StartBlock(MachineBasicBlock *BB);
|
||||
|
||||
/// Schedule - Order nodes according to selected style, filling
|
||||
/// in the Sequence member.
|
||||
///
|
||||
virtual void Schedule() = 0;
|
||||
|
||||
/// FinishBlock - Clean up after scheduling in the given block.
|
||||
///
|
||||
virtual void FinishBlock();
|
||||
|
||||
virtual void dumpNode(const SUnit *SU) const;
|
||||
|
||||
virtual std::string getGraphNodeLabel(const SUnit *SU) const;
|
||||
|
@ -90,6 +90,7 @@ public:
|
||||
|
||||
private:
|
||||
void ReleasePred(SUnit *SU, SDep *PredEdge);
|
||||
void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
|
||||
void ScheduleNodeBottomUp(SUnit*, unsigned);
|
||||
SUnit *CopyAndMoveSuccessors(SUnit*);
|
||||
void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
|
||||
@ -142,23 +143,15 @@ void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
|
||||
}
|
||||
#endif
|
||||
|
||||
if (PredSU->NumSuccsLeft == 0) {
|
||||
// If all the node's successors are scheduled, this node is ready
|
||||
// to be scheduled. Ignore the special EntrySU node.
|
||||
if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
|
||||
PredSU->isAvailable = true;
|
||||
AvailableQueue.push(PredSU);
|
||||
}
|
||||
}
|
||||
|
||||
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
||||
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
||||
DEBUG(SU->dump(this));
|
||||
|
||||
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
|
||||
SU->setHeightToAtLeast(CurCycle);
|
||||
Sequence.push_back(SU);
|
||||
|
||||
void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
|
||||
// Bottom up: release predecessors
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
@ -175,6 +168,20 @@ void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
||||
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
||||
DEBUG(SU->dump(this));
|
||||
|
||||
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
|
||||
SU->setHeightToAtLeast(CurCycle);
|
||||
Sequence.push_back(SU);
|
||||
|
||||
ReleasePredecessors(SU, CurCycle);
|
||||
|
||||
// Release all the implicit physical register defs that are live.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
@ -480,6 +487,10 @@ bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
|
||||
/// schedulers.
|
||||
void ScheduleDAGFast::ListScheduleBottomUp() {
|
||||
unsigned CurCycle = 0;
|
||||
|
||||
// Release any predecessors of the special Exit node.
|
||||
ReleasePredecessors(&ExitSU, CurCycle);
|
||||
|
||||
// Add root to Available queue.
|
||||
if (!SUnits.empty()) {
|
||||
SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
|
||||
|
@ -78,6 +78,7 @@ public:
|
||||
|
||||
private:
|
||||
void ReleaseSucc(SUnit *SU, const SDep &D);
|
||||
void ReleaseSuccessors(SUnit *SU);
|
||||
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
||||
void ListScheduleTopDown();
|
||||
};
|
||||
@ -118,8 +119,20 @@ void ScheduleDAGList::ReleaseSucc(SUnit *SU, const SDep &D) {
|
||||
|
||||
SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
|
||||
|
||||
if (SuccSU->NumPredsLeft == 0) {
|
||||
// If all the node's predecessors are scheduled, this node is ready
|
||||
// to be scheduled. Ignore the special ExitSU node.
|
||||
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
|
||||
PendingQueue.push_back(SuccSU);
|
||||
}
|
||||
|
||||
void ScheduleDAGList::ReleaseSuccessors(SUnit *SU) {
|
||||
// Top down: release successors.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
assert(!I->isAssignedRegDep() &&
|
||||
"The list-td scheduler doesn't yet support physreg dependencies!");
|
||||
|
||||
ReleaseSucc(SU, *I);
|
||||
}
|
||||
}
|
||||
|
||||
@ -134,15 +147,7 @@ void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
|
||||
SU->setDepthToAtLeast(CurCycle);
|
||||
|
||||
// Top down: release successors.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
assert(!I->isAssignedRegDep() &&
|
||||
"The list-td scheduler doesn't yet support physreg dependencies!");
|
||||
|
||||
ReleaseSucc(SU, *I);
|
||||
}
|
||||
|
||||
ReleaseSuccessors(SU);
|
||||
SU->isScheduled = true;
|
||||
AvailableQueue->ScheduledNode(SU);
|
||||
}
|
||||
@ -152,6 +157,9 @@ void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
void ScheduleDAGList::ListScheduleTopDown() {
|
||||
unsigned CurCycle = 0;
|
||||
|
||||
// Release any successors of the special Entry node.
|
||||
ReleaseSuccessors(&EntrySU);
|
||||
|
||||
// All leaves to Available queue.
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
// It is available if it has no predecessors.
|
||||
|
@ -114,7 +114,9 @@ public:
|
||||
|
||||
private:
|
||||
void ReleasePred(SUnit *SU, const SDep *PredEdge);
|
||||
void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
|
||||
void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
|
||||
void ReleaseSuccessors(SUnit *SU);
|
||||
void CapturePred(SDep *PredEdge);
|
||||
void ScheduleNodeBottomUp(SUnit*, unsigned);
|
||||
void ScheduleNodeTopDown(SUnit*, unsigned);
|
||||
@ -204,23 +206,15 @@ void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
|
||||
}
|
||||
#endif
|
||||
|
||||
if (PredSU->NumSuccsLeft == 0) {
|
||||
// If all the node's successors are scheduled, this node is ready
|
||||
// to be scheduled. Ignore the special EntrySU node.
|
||||
if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
|
||||
PredSU->isAvailable = true;
|
||||
AvailableQueue->push(PredSU);
|
||||
}
|
||||
}
|
||||
|
||||
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
||||
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
||||
DEBUG(SU->dump(this));
|
||||
|
||||
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
|
||||
SU->setHeightToAtLeast(CurCycle);
|
||||
Sequence.push_back(SU);
|
||||
|
||||
void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
|
||||
// Bottom up: release predecessors
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
@ -237,6 +231,20 @@ void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
||||
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
||||
DEBUG(SU->dump(this));
|
||||
|
||||
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
|
||||
SU->setHeightToAtLeast(CurCycle);
|
||||
Sequence.push_back(SU);
|
||||
|
||||
ReleasePredecessors(SU, CurCycle);
|
||||
|
||||
// Release all the implicit physical register defs that are live.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
@ -627,6 +635,10 @@ bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
|
||||
/// schedulers.
|
||||
void ScheduleDAGRRList::ListScheduleBottomUp() {
|
||||
unsigned CurCycle = 0;
|
||||
|
||||
// Release any predecessors of the special Exit node.
|
||||
ReleasePredecessors(&ExitSU, CurCycle);
|
||||
|
||||
// Add root to Available queue.
|
||||
if (!SUnits.empty()) {
|
||||
SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
|
||||
@ -789,12 +801,25 @@ void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
|
||||
}
|
||||
#endif
|
||||
|
||||
if (SuccSU->NumPredsLeft == 0) {
|
||||
// If all the node's predecessors are scheduled, this node is ready
|
||||
// to be scheduled. Ignore the special ExitSU node.
|
||||
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
|
||||
SuccSU->isAvailable = true;
|
||||
AvailableQueue->push(SuccSU);
|
||||
}
|
||||
}
|
||||
|
||||
void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
|
||||
// Top down: release successors
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
assert(!I->isAssignedRegDep() &&
|
||||
"The list-tdrr scheduler doesn't yet support physreg dependencies!");
|
||||
|
||||
ReleaseSucc(SU, &*I);
|
||||
}
|
||||
}
|
||||
|
||||
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
||||
/// count of its successors. If a successor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
@ -806,15 +831,7 @@ void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
SU->setDepthToAtLeast(CurCycle);
|
||||
Sequence.push_back(SU);
|
||||
|
||||
// Top down: release successors
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
assert(!I->isAssignedRegDep() &&
|
||||
"The list-tdrr scheduler doesn't yet support physreg dependencies!");
|
||||
|
||||
ReleaseSucc(SU, &*I);
|
||||
}
|
||||
|
||||
ReleaseSuccessors(SU);
|
||||
SU->isScheduled = true;
|
||||
AvailableQueue->ScheduledNode(SU);
|
||||
}
|
||||
@ -824,6 +841,9 @@ void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
void ScheduleDAGRRList::ListScheduleTopDown() {
|
||||
unsigned CurCycle = 0;
|
||||
|
||||
// Release any successors of the special Entry node.
|
||||
ReleaseSuccessors(&EntrySU);
|
||||
|
||||
// All leaves to Available queue.
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
// It is available if it has no predecessors.
|
||||
|
Loading…
Reference in New Issue
Block a user