[CFLAA] Simplify CFLGraphBuilder. NFC.

This patch simplifies the graph builder by encoding nodes as {Value,
Dereference Level} pairs. This lets us kill edge types, and allows us to
get rid of hacks in StratifiedSets (like addAttrsBelow/...). This
simplification also allows us to remove InstantiatedRelations and
InstantiatedAttrs.

Patch by Jia Chen.

Differential Revision: http://reviews.llvm.org/D22080


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275122 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
George Burgess IV 2016-07-11 22:59:09 +00:00
parent f84fc6de4f
commit 9e937064ea
4 changed files with 184 additions and 264 deletions

View File

@ -35,6 +35,7 @@
#ifndef LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
#define LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/CallSite.h"
@ -166,6 +167,25 @@ struct InstantiatedAttr {
Optional<InstantiatedAttr> instantiateExternalAttribute(ExternalAttribute,
CallSite);
}
template <> struct DenseMapInfo<cflaa::InstantiatedValue> {
static inline cflaa::InstantiatedValue getEmptyKey() {
return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getEmptyKey(),
DenseMapInfo<unsigned>::getEmptyKey()};
}
static inline cflaa::InstantiatedValue getTombstoneKey() {
return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getTombstoneKey(),
DenseMapInfo<unsigned>::getTombstoneKey()};
}
static unsigned getHashValue(const cflaa::InstantiatedValue &IV) {
return DenseMapInfo<std::pair<Value *, unsigned>>::getHashValue(
std::make_pair(IV.Val, IV.DerefLevel));
}
static bool isEqual(const cflaa::InstantiatedValue &LHS,
const cflaa::InstantiatedValue &RHS) {
return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
}
};
}
#endif

View File

@ -16,45 +16,29 @@
#define LLVM_ANALYSIS_CFLGRAPH_H
#include "AliasAnalysisSummary.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
namespace llvm {
namespace cflaa {
/// Edges can be one of four "weights" -- each weight must have an inverse
/// weight (Assign has Assign; Reference has Dereference).
enum class EdgeType {
/// The weight assigned when assigning from or to a value. For example, in:
/// %b = getelementptr %a, 0
/// ...The relationships are %b assign %a, and %a assign %b. This used to be
/// two edges, but having a distinction bought us nothing.
Assign,
/// The edge used when we have an edge going from some handle to a Value.
/// Examples of this include:
/// %b = load %a (%b Dereference %a)
/// %b = extractelement %a, 0 (%a Dereference %b)
Dereference,
/// The edge used when our edge goes from a value to a handle that may have
/// contained it at some point. Examples:
/// %b = load %a (%a Reference %b)
/// %b = extractelement %a, 0 (%b Reference %a)
Reference
};
/// \brief The Program Expression Graph (PEG) of CFL analysis
/// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
/// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
/// the main purpose of this graph is to abstract away unrelated facts and
/// translate the rest into a form that can be easily digested by CFL analyses.
/// Each Node in the graph is an InstantiatedValue, and each edge represent a
/// pointer assignment between InstantiatedValue. Pointer
/// references/dereferences are not explicitly stored in the graph: we
/// implicitly assume that for each node (X, I) it has a dereference edge to (X,
/// I+1) and a reference edge to (X, I-1).
class CFLGraph {
typedef Value *Node;
public:
typedef InstantiatedValue Node;
struct Edge {
EdgeType Type;
Node Other;
};
@ -65,48 +49,56 @@ class CFLGraph {
AliasAttrs Attr;
};
typedef DenseMap<Node, NodeInfo> NodeMap;
NodeMap NodeImpls;
class ValueInfo {
std::vector<NodeInfo> Levels;
// Gets the inverse of a given EdgeType.
static EdgeType flipWeight(EdgeType Initial) {
switch (Initial) {
case EdgeType::Assign:
return EdgeType::Assign;
case EdgeType::Dereference:
return EdgeType::Reference;
case EdgeType::Reference:
return EdgeType::Dereference;
public:
bool addNodeToLevel(unsigned Level) {
auto NumLevels = Levels.size();
if (NumLevels > Level)
return false;
Levels.resize(Level + 1);
return true;
}
llvm_unreachable("Incomplete coverage of EdgeType enum");
}
NodeInfo &getNodeInfoAtLevel(unsigned Level) {
assert(Level < Levels.size());
return Levels[Level];
}
const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
assert(Level < Levels.size());
return Levels[Level];
}
unsigned getNumLevels() const { return Levels.size(); }
};
private:
typedef DenseMap<Value *, ValueInfo> ValueMap;
ValueMap ValueImpls;
const NodeInfo *getNode(Node N) const {
auto Itr = NodeImpls.find(N);
if (Itr == NodeImpls.end())
auto Itr = ValueImpls.find(N.Val);
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
return nullptr;
return &Itr->second;
return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
}
NodeInfo *getNode(Node N) {
auto Itr = NodeImpls.find(N);
if (Itr == NodeImpls.end())
auto Itr = ValueImpls.find(N.Val);
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
return nullptr;
return &Itr->second;
return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
}
static Node nodeDeref(const NodeMap::value_type &P) { return P.first; }
typedef std::pointer_to_unary_function<const NodeMap::value_type &, Node>
NodeDerefFun;
public:
typedef EdgeList::const_iterator const_edge_iterator;
typedef mapped_iterator<NodeMap::const_iterator, NodeDerefFun>
const_node_iterator;
typedef ValueMap::const_iterator const_value_iterator;
bool addNode(Node N) {
return NodeImpls
.insert(std::make_pair(N, NodeInfo{EdgeList(), getAttrNone()}))
.second;
bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
assert(N.Val != nullptr);
auto &ValInfo = ValueImpls[N.Val];
auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
return Changed;
}
void addAttr(Node N, AliasAttrs Attr) {
@ -115,14 +107,13 @@ public:
Info->Attr |= Attr;
}
void addEdge(Node From, Node To, EdgeType Type) {
void addEdge(Node From, Node To, int64_t Offset = 0) {
auto *FromInfo = getNode(From);
assert(FromInfo != nullptr);
auto *ToInfo = getNode(To);
assert(ToInfo != nullptr);
FromInfo->Edges.push_back(Edge{Type, To});
ToInfo->Edges.push_back(Edge{flipWeight(Type), From});
FromInfo->Edges.push_back(Edge{To});
}
AliasAttrs attrFor(Node N) const {
@ -131,21 +122,10 @@ public:
return Info->Attr;
}
iterator_range<const_edge_iterator> edgesFor(Node N) const {
auto *Info = getNode(N);
assert(Info != nullptr);
auto &Edges = Info->Edges;
return make_range(Edges.begin(), Edges.end());
iterator_range<const_value_iterator> value_mappings() const {
return make_range<const_value_iterator>(ValueImpls.begin(),
ValueImpls.end());
}
iterator_range<const_node_iterator> nodes() const {
return make_range<const_node_iterator>(
map_iterator(NodeImpls.begin(), NodeDerefFun(nodeDeref)),
map_iterator(NodeImpls.end(), NodeDerefFun(nodeDeref)));
}
bool empty() const { return NodeImpls.empty(); }
std::size_t size() const { return NodeImpls.size(); }
};
///\brief A builder class used to create CFLGraph instance from a given function
@ -165,10 +145,6 @@ template <typename CFLAA> class CFLGraphBuilder {
CFLGraph Graph;
SmallVector<Value *, 4> ReturnedValues;
// Auxiliary structures used by the builder
SmallVector<InstantiatedRelation, 8> InstantiatedRelations;
SmallVector<InstantiatedAttr, 8> InstantiatedAttrs;
// Helper class
/// Gets the edges our graph should have, based on an Instruction*
class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
@ -177,8 +153,6 @@ template <typename CFLAA> class CFLGraphBuilder {
CFLGraph &Graph;
SmallVectorImpl<Value *> &ReturnValues;
SmallVectorImpl<InstantiatedRelation> &InstantiatedRelations;
SmallVectorImpl<InstantiatedAttr> &InstantiatedAttrs;
static bool hasUsefulEdges(ConstantExpr *CE) {
// ConstantExpr doesn't have terminators, invokes, or fences, so only
@ -203,42 +177,47 @@ template <typename CFLAA> class CFLGraphBuilder {
return false;
}
void addNode(Value *Val) {
assert(Val != nullptr);
if (!Graph.addNode(Val))
return;
if (isa<GlobalValue>(Val)) {
Graph.addAttr(Val, getGlobalOrArgAttrFromValue(*Val));
// Currently we do not attempt to be smart on globals
InstantiatedAttrs.push_back(
InstantiatedAttr{InstantiatedValue{Val, 1}, getAttrUnknown()});
} else if (auto CExpr = dyn_cast<ConstantExpr>(Val))
if (hasUsefulEdges(CExpr))
visitConstantExpr(CExpr);
void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
assert(Val != nullptr && Val->getType()->isPointerTy());
if (auto GVal = dyn_cast<GlobalValue>(Val)) {
if (Graph.addNode(InstantiatedValue{GVal, 0},
getGlobalOrArgAttrFromValue(*GVal)))
Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
} else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
if (hasUsefulEdges(CExpr)) {
if (Graph.addNode(InstantiatedValue{CExpr, 0}))
visitConstantExpr(CExpr);
}
} else
Graph.addNode(InstantiatedValue{Val, 0}, Attr);
}
void addNodeWithAttr(Value *Val, AliasAttrs Attr) {
addNode(Val);
Graph.addAttr(Val, Attr);
}
void addEdge(Value *From, Value *To, EdgeType Type) {
void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
assert(From != nullptr && To != nullptr);
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
return;
addNode(From);
if (To != From)
if (To != From) {
addNode(To);
Graph.addEdge(From, To, Type);
Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
Offset);
}
}
void addDerefEdge(Value *From, Value *To) {
assert(From != nullptr && To != nullptr);
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
return;
addNode(From);
addNode(To);
Graph.addNode(InstantiatedValue{From, 1});
Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
}
public:
GetEdgesVisitor(CFLGraphBuilder &Builder)
: AA(Builder.Analysis), TLI(Builder.TLI), Graph(Builder.Graph),
ReturnValues(Builder.ReturnedValues),
InstantiatedRelations(Builder.InstantiatedRelations),
InstantiatedAttrs(Builder.InstantiatedAttrs) {}
ReturnValues(Builder.ReturnedValues) {}
void visitInstruction(Instruction &) {
llvm_unreachable("Unsupported instruction encountered");
@ -255,46 +234,46 @@ template <typename CFLAA> class CFLGraphBuilder {
void visitPtrToIntInst(PtrToIntInst &Inst) {
auto *Ptr = Inst.getOperand(0);
addNodeWithAttr(Ptr, getAttrEscaped());
addNode(Ptr, getAttrEscaped());
}
void visitIntToPtrInst(IntToPtrInst &Inst) {
auto *Ptr = &Inst;
addNodeWithAttr(Ptr, getAttrUnknown());
addNode(Ptr, getAttrUnknown());
}
void visitCastInst(CastInst &Inst) {
auto *Src = Inst.getOperand(0);
addEdge(Src, &Inst, EdgeType::Assign);
addAssignEdge(Src, &Inst);
}
void visitBinaryOperator(BinaryOperator &Inst) {
auto *Op1 = Inst.getOperand(0);
auto *Op2 = Inst.getOperand(1);
addEdge(Op1, &Inst, EdgeType::Assign);
addEdge(Op2, &Inst, EdgeType::Assign);
addAssignEdge(Op1, &Inst);
addAssignEdge(Op2, &Inst);
}
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getNewValOperand();
addEdge(Ptr, Val, EdgeType::Dereference);
addDerefEdge(Ptr, Val);
}
void visitAtomicRMWInst(AtomicRMWInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getValOperand();
addEdge(Ptr, Val, EdgeType::Dereference);
addDerefEdge(Ptr, Val);
}
void visitPHINode(PHINode &Inst) {
for (Value *Val : Inst.incoming_values())
addEdge(Val, &Inst, EdgeType::Assign);
addAssignEdge(Val, &Inst);
}
void visitGetElementPtrInst(GetElementPtrInst &Inst) {
auto *Op = Inst.getPointerOperand();
addEdge(Op, &Inst, EdgeType::Assign);
addAssignEdge(Op, &Inst);
}
void visitSelectInst(SelectInst &Inst) {
@ -305,22 +284,22 @@ template <typename CFLAA> class CFLGraphBuilder {
auto *TrueVal = Inst.getTrueValue();
auto *FalseVal = Inst.getFalseValue();
addEdge(TrueVal, &Inst, EdgeType::Assign);
addEdge(FalseVal, &Inst, EdgeType::Assign);
addAssignEdge(TrueVal, &Inst);
addAssignEdge(FalseVal, &Inst);
}
void visitAllocaInst(AllocaInst &Inst) { Graph.addNode(&Inst); }
void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
void visitLoadInst(LoadInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = &Inst;
addEdge(Val, Ptr, EdgeType::Reference);
addDerefEdge(Ptr, Val);
}
void visitStoreInst(StoreInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getValueOperand();
addEdge(Ptr, Val, EdgeType::Dereference);
addDerefEdge(Ptr, Val);
}
void visitVAArgInst(VAArgInst &Inst) {
@ -332,7 +311,7 @@ template <typename CFLAA> class CFLGraphBuilder {
// For now, we'll handle this like a landingpad instruction (by placing
// the
// result in its own group, and having that group alias externals).
addNodeWithAttr(&Inst, getAttrUnknown());
addNode(&Inst, getAttrUnknown());
}
static bool isFunctionExternal(Function *Fn) {
@ -363,15 +342,18 @@ template <typename CFLAA> class CFLGraphBuilder {
auto &RetParamRelations = Summary->RetParamRelations;
for (auto &Relation : RetParamRelations) {
auto IRelation = instantiateExternalRelation(Relation, CS);
if (IRelation.hasValue())
InstantiatedRelations.push_back(*IRelation);
if (IRelation.hasValue()) {
Graph.addNode(IRelation->From);
Graph.addNode(IRelation->To);
Graph.addEdge(IRelation->From, IRelation->To);
}
}
auto &RetParamAttributes = Summary->RetParamAttributes;
for (auto &Attribute : RetParamAttributes) {
auto IAttr = instantiateExternalAttribute(Attribute, CS);
if (IAttr.hasValue())
InstantiatedAttrs.push_back(*IAttr);
Graph.addNode(IAttr->IValue, IAttr->Attr);
}
}
@ -383,7 +365,8 @@ template <typename CFLAA> class CFLGraphBuilder {
// Make sure all arguments and return value are added to the graph first
for (Value *V : CS.args())
addNode(V);
if (V->getType()->isPointerTy())
addNode(V);
if (Inst->getType()->isPointerTy())
addNode(Inst);
@ -413,23 +396,20 @@ template <typename CFLAA> class CFLGraphBuilder {
for (Value *V : CS.args()) {
if (V->getType()->isPointerTy()) {
// The argument itself escapes.
addNodeWithAttr(V, getAttrEscaped());
Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
// The fate of argument memory is unknown. Note that since
// AliasAttrs
// is transitive with respect to dereference, we only need to
// specify
// it for the first-level memory.
InstantiatedAttrs.push_back(
InstantiatedAttr{InstantiatedValue{V, 1}, getAttrUnknown()});
// AliasAttrs is transitive with respect to dereference, we only
// need to specify it for the first-level memory.
Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
}
}
if (Inst->getType()->isPointerTy()) {
auto *Fn = CS.getCalledFunction();
if (Fn == nullptr || !Fn->doesNotAlias(0))
// No need to call addNodeWithAttr() since we've added Inst at the
// No need to call addNode() since we've added Inst at the
// beginning of this function and we know it is not a global.
Graph.addAttr(Inst, getAttrUnknown());
Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown());
}
}
@ -440,40 +420,40 @@ template <typename CFLAA> class CFLGraphBuilder {
void visitExtractElementInst(ExtractElementInst &Inst) {
auto *Ptr = Inst.getVectorOperand();
auto *Val = &Inst;
addEdge(Val, Ptr, EdgeType::Reference);
addDerefEdge(Ptr, Val);
}
void visitInsertElementInst(InsertElementInst &Inst) {
auto *Vec = Inst.getOperand(0);
auto *Val = Inst.getOperand(1);
addEdge(Vec, &Inst, EdgeType::Assign);
addEdge(&Inst, Val, EdgeType::Dereference);
addAssignEdge(Vec, &Inst);
addDerefEdge(&Inst, Val);
}
void visitLandingPadInst(LandingPadInst &Inst) {
// Exceptions come from "nowhere", from our analysis' perspective.
// So we place the instruction its own group, noting that said group may
// alias externals
addNodeWithAttr(&Inst, getAttrUnknown());
addNode(&Inst, getAttrUnknown());
}
void visitInsertValueInst(InsertValueInst &Inst) {
auto *Agg = Inst.getOperand(0);
auto *Val = Inst.getOperand(1);
addEdge(Agg, &Inst, EdgeType::Assign);
addEdge(&Inst, Val, EdgeType::Dereference);
addAssignEdge(Agg, &Inst);
addDerefEdge(&Inst, Val);
}
void visitExtractValueInst(ExtractValueInst &Inst) {
auto *Ptr = Inst.getAggregateOperand();
addEdge(&Inst, Ptr, EdgeType::Reference);
addDerefEdge(Ptr, &Inst);
}
void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
auto *From1 = Inst.getOperand(0);
auto *From2 = Inst.getOperand(1);
addEdge(From1, &Inst, EdgeType::Assign);
addEdge(From2, &Inst, EdgeType::Assign);
addAssignEdge(From1, &Inst);
addAssignEdge(From2, &Inst);
}
void visitConstantExpr(ConstantExpr *CE) {
@ -504,11 +484,10 @@ template <typename CFLAA> class CFLGraphBuilder {
void addArgumentToGraph(Argument &Arg) {
if (Arg.getType()->isPointerTy()) {
Graph.addNode(&Arg);
Graph.addAttr(&Arg, getGlobalOrArgAttrFromValue(Arg));
Graph.addNode(InstantiatedValue{&Arg, 0},
getGlobalOrArgAttrFromValue(Arg));
// Pointees of a formal parameter is known to the caller
InstantiatedAttrs.push_back(
InstantiatedAttr{InstantiatedValue{&Arg, 1}, getAttrCaller()});
Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
}
}
@ -518,19 +497,21 @@ template <typename CFLAA> class CFLGraphBuilder {
// %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
// addInstructionToGraph would add both the `load` and `getelementptr`
// instructions to the graph appropriately.
void addInstructionToGraph(Instruction &Inst) {
void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
if (!hasUsefulEdges(&Inst))
return;
GetEdgesVisitor(*this).visit(Inst);
Visitor.visit(Inst);
}
// Builds the graph needed for constructing the StratifiedSets for the given
// function
void buildGraphFrom(Function &Fn) {
GetEdgesVisitor Visitor(*this);
for (auto &Bb : Fn.getBasicBlockList())
for (auto &Inst : Bb.getInstList())
addInstructionToGraph(Inst);
addInstructionToGraph(Visitor, Inst);
for (auto &Arg : Fn.args())
addArgumentToGraph(Arg);
@ -546,12 +527,6 @@ public:
const SmallVector<Value *, 4> &getReturnValues() const {
return ReturnedValues;
}
const SmallVector<InstantiatedRelation, 8> &getInstantiatedRelations() const {
return InstantiatedRelations;
}
const SmallVector<InstantiatedAttr, 8> &getInstantiatedAttrs() const {
return InstantiatedAttrs;
}
};
}
}

View File

@ -67,14 +67,16 @@ CFLSteensAAResult::~CFLSteensAAResult() {}
/// Information we have about a function and would like to keep around.
class CFLSteensAAResult::FunctionInfo {
StratifiedSets<Value *> Sets;
StratifiedSets<InstantiatedValue> Sets;
AliasSummary Summary;
public:
FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
StratifiedSets<Value *> S);
StratifiedSets<InstantiatedValue> S);
const StratifiedSets<Value *> &getStratifiedSets() const { return Sets; }
const StratifiedSets<InstantiatedValue> &getStratifiedSets() const {
return Sets;
}
const AliasSummary &getAliasSummary() const { return Summary; }
};
@ -84,21 +86,10 @@ static Optional<Function *> parentFunctionOfValue(Value *);
const StratifiedIndex StratifiedLink::SetSentinel =
std::numeric_limits<StratifiedIndex>::max();
namespace {
/// StratifiedSets call for knowledge of "direction", so this is how we
/// represent that locally.
enum class Level { Same, Above, Below };
}
//===----------------------------------------------------------------------===//
// Function declarations that require types defined in the namespace above
//===----------------------------------------------------------------------===//
/// Gets the "Level" that one should travel in StratifiedSets
/// given an EdgeType.
static Level directionOfEdgeType(EdgeType);
/// Determines whether it would be pointless to add the given Value to our sets.
static bool canSkipAddingToSets(Value *Val);
@ -113,18 +104,6 @@ static Optional<Function *> parentFunctionOfValue(Value *Val) {
return None;
}
static Level directionOfEdgeType(EdgeType Weight) {
switch (Weight) {
case EdgeType::Reference:
return Level::Above;
case EdgeType::Dereference:
return Level::Below;
case EdgeType::Assign:
return Level::Same;
}
llvm_unreachable("Incomplete switch coverage");
}
static bool canSkipAddingToSets(Value *Val) {
// Constants can share instances, which may falsely unify multiple
// sets, e.g. in
@ -148,7 +127,7 @@ static bool canSkipAddingToSets(Value *Val) {
CFLSteensAAResult::FunctionInfo::FunctionInfo(
Function &Fn, const SmallVectorImpl<Value *> &RetVals,
StratifiedSets<Value *> S)
StratifiedSets<InstantiatedValue> S)
: Sets(std::move(S)) {
// Historically, an arbitrary upper-bound of 50 args was selected. We may want
// to remove this if it doesn't really matter in practice.
@ -197,7 +176,7 @@ CFLSteensAAResult::FunctionInfo::FunctionInfo(
for (auto *RetVal : RetVals) {
assert(RetVal != nullptr);
assert(RetVal->getType()->isPointerTy());
auto RetInfo = Sets.find(RetVal);
auto RetInfo = Sets.find(InstantiatedValue{RetVal, 0});
if (RetInfo.hasValue())
AddToRetParamRelations(0, RetInfo->Index);
}
@ -206,7 +185,7 @@ CFLSteensAAResult::FunctionInfo::FunctionInfo(
unsigned I = 0;
for (auto &Param : Fn.args()) {
if (Param.getType()->isPointerTy()) {
auto ParamInfo = Sets.find(&Param);
auto ParamInfo = Sets.find(InstantiatedValue{&Param, 0});
if (ParamInfo.hasValue())
AddToRetParamRelations(I + 1, ParamInfo->Index);
}
@ -217,62 +196,41 @@ CFLSteensAAResult::FunctionInfo::FunctionInfo(
// Builds the graph + StratifiedSets for a function.
CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
CFLGraphBuilder<CFLSteensAAResult> GraphBuilder(*this, TLI, *Fn);
StratifiedSetsBuilder<Value *> SetBuilder;
StratifiedSetsBuilder<InstantiatedValue> SetBuilder;
// Add all CFLGraph nodes and all Dereference edges to StratifiedSets
auto &Graph = GraphBuilder.getCFLGraph();
SmallVector<Value *, 16> Worklist;
for (auto Node : Graph.nodes())
Worklist.push_back(Node);
while (!Worklist.empty()) {
auto *CurValue = Worklist.pop_back_val();
SetBuilder.add(CurValue);
if (canSkipAddingToSets(CurValue))
for (const auto &Mapping : Graph.value_mappings()) {
auto Val = Mapping.first;
if (canSkipAddingToSets(Val))
continue;
auto &ValueInfo = Mapping.second;
auto Attr = Graph.attrFor(CurValue);
SetBuilder.noteAttributes(CurValue, Attr);
for (const auto &Edge : Graph.edgesFor(CurValue)) {
auto Label = Edge.Type;
auto *OtherValue = Edge.Other;
if (canSkipAddingToSets(OtherValue))
continue;
bool Added;
switch (directionOfEdgeType(Label)) {
case Level::Above:
Added = SetBuilder.addAbove(CurValue, OtherValue);
break;
case Level::Below:
Added = SetBuilder.addBelow(CurValue, OtherValue);
break;
case Level::Same:
Added = SetBuilder.addWith(CurValue, OtherValue);
break;
}
if (Added)
Worklist.push_back(OtherValue);
assert(ValueInfo.getNumLevels() > 0);
SetBuilder.add(InstantiatedValue{Val, 0});
SetBuilder.noteAttributes(InstantiatedValue{Val, 0},
ValueInfo.getNodeInfoAtLevel(0).Attr);
for (unsigned I = 0, E = ValueInfo.getNumLevels() - 1; I < E; ++I) {
SetBuilder.add(InstantiatedValue{Val, I + 1});
SetBuilder.noteAttributes(InstantiatedValue{Val, I + 1},
ValueInfo.getNodeInfoAtLevel(I + 1).Attr);
SetBuilder.addBelow(InstantiatedValue{Val, I},
InstantiatedValue{Val, I + 1});
}
}
// Special handling for interprocedural aliases
for (auto &Edge : GraphBuilder.getInstantiatedRelations()) {
auto FromVal = Edge.From.Val;
auto ToVal = Edge.To.Val;
SetBuilder.add(FromVal);
SetBuilder.add(ToVal);
SetBuilder.addBelowWith(FromVal, Edge.From.DerefLevel, ToVal,
Edge.To.DerefLevel);
}
// Add all assign edges to StratifiedSets
for (const auto &Mapping : Graph.value_mappings()) {
auto Val = Mapping.first;
if (canSkipAddingToSets(Val))
continue;
auto &ValueInfo = Mapping.second;
// Special handling for interprocedural attributes
for (auto &IPAttr : GraphBuilder.getInstantiatedAttrs()) {
auto Val = IPAttr.IValue.Val;
SetBuilder.add(Val);
SetBuilder.addAttributesBelow(Val, IPAttr.IValue.DerefLevel, IPAttr.Attr);
for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
auto Src = InstantiatedValue{Val, I};
for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges)
SetBuilder.addWith(Src, Edge.Other);
}
}
return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
@ -349,11 +307,11 @@ AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
assert(MaybeInfo.hasValue());
auto &Sets = MaybeInfo->getStratifiedSets();
auto MaybeA = Sets.find(ValA);
auto MaybeA = Sets.find(InstantiatedValue{ValA, 0});
if (!MaybeA.hasValue())
return MayAlias;
auto MaybeB = Sets.find(ValB);
auto MaybeB = Sets.find(InstantiatedValue{ValB, 0});
if (!MaybeB.hasValue())
return MayAlias;

View File

@ -386,46 +386,12 @@ public:
return addAtMerging(ToAdd, Below);
}
/// \brief Set the AliasAttrs of the set "Level"-levels below "Main". If
/// there is no set below "Main", create one for it.
void addAttributesBelow(const T &Main, unsigned Level, AliasAttrs Attr) {
assert(has(Main));
auto Index = *indexOf(Main);
auto *Link = &linksAt(Index);
for (unsigned I = 0; I < Level; ++I) {
Index = Link->hasBelow() ? Link->getBelow() : addLinkBelow(Index);
Link = &linksAt(Index);
}
Link->setAttrs(Attr);
}
bool addWith(const T &Main, const T &ToAdd) {
assert(has(Main));
auto MainIndex = *indexOf(Main);
return addAtMerging(ToAdd, MainIndex);
}
/// \brief Merge the set "MainBelow"-levels below "Main" and the set
/// "ToAddBelow"-levels below "ToAdd".
void addBelowWith(const T &Main, unsigned MainBelow, const T &ToAdd,
unsigned ToAddBelow) {
assert(has(Main));
assert(has(ToAdd));
auto GetIndexBelow = [&](StratifiedIndex Index, unsigned NumLevel) {
for (unsigned I = 0; I < NumLevel; ++I) {
auto Link = linksAt(Index);
Index = Link.hasBelow() ? Link.getBelow() : addLinkBelow(Index);
}
return Index;
};
auto MainIndex = GetIndexBelow(*indexOf(Main), MainBelow);
auto ToAddIndex = GetIndexBelow(*indexOf(ToAdd), ToAddBelow);
if (&linksAt(MainIndex) != &linksAt(ToAddIndex))
merge(MainIndex, ToAddIndex);
}
void noteAttributes(const T &Main, AliasAttrs NewAttrs) {
assert(has(Main));
auto *Info = *get(Main);
@ -545,6 +511,7 @@ private:
NewBelow.setAbove(LinksInto->Number);
}
LinksInto->setAttrs(LinksFrom->getAttrs());
LinksFrom->remapTo(LinksInto->Number);
}