From a0fa588d77cfb6828e05593b376ec48aaf9dbebc Mon Sep 17 00:00:00 2001 From: Chris Lattner Date: Mon, 26 Nov 2001 16:57:31 +0000 Subject: [PATCH] Implement array indexing reverse engineering git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1339 91177308-0d34-0410-b5e6-96231b3b80d8 --- lib/Transforms/ExprTypeConvert.cpp | 479 ++++++++++++++++++----------- 1 file changed, 300 insertions(+), 179 deletions(-) diff --git a/lib/Transforms/ExprTypeConvert.cpp b/lib/Transforms/ExprTypeConvert.cpp index 2e7c2979073..327cb6301de 100644 --- a/lib/Transforms/ExprTypeConvert.cpp +++ b/lib/Transforms/ExprTypeConvert.cpp @@ -14,6 +14,7 @@ #include "llvm/ConstPoolVals.h" #include "llvm/Optimizations/ConstantHandling.h" #include "llvm/Optimizations/DCE.h" +#include "llvm/Analysis/Expressions.h" #include #include @@ -21,46 +22,159 @@ //#define DEBUG_EXPR_CONVERT 1 -static inline const Type *getTy(const Value *V, ValueTypeCache &CT) { - ValueTypeCache::iterator I = CT.find(V); - if (I == CT.end()) return V->getType(); - return I->second; -} - -GetElementPtrInst *getAddToGEPResult(const Type *Ty, const Value *V) { - const StructType *StructTy = getPointedToStruct(Ty); - if (StructTy == 0) return 0; // Must be a pointer to a struct... - - // Must be a constant unsigned offset value... get it now... - if (!isa(V)) return 0; - unsigned Offset = cast(V)->getValue(); - - // Check to make sure the offset is somewhat legitiment w.r.t the struct - // type... - if (Offset >= TD.getTypeSize(StructTy)) return 0; - - // If we get this far, we have succeeded... TODO: We need to handle array - // indexing as well... - const StructLayout *SL = TD.getStructLayout(StructTy); - vector Offsets; - unsigned ActualOffset = Offset; - const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets); - - if (ActualOffset != Offset) return 0; // TODO: Handle Array indexing... - - // Success! Return the GEP instruction, with a dummy first argument. - ConstPoolVal *Dummy = ConstPoolVal::getNullConstant(Ty); - return new GetElementPtrInst(Dummy, Offsets); -} - - - static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, ValueTypeCache &ConvertedTypes); static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, ValueMapCache &VMC); +// AllIndicesZero - Return true if all of the indices of the specified memory +// access instruction are zero, indicating an effectively nil offset to the +// pointer value. +// +static bool AllIndicesZero(const MemAccessInst *MAI) { + for (User::op_const_iterator S = MAI->idx_begin(), E = MAI->idx_end(); + S != E; ++S) + if (!isa(*S) || !cast(*S)->isNullValue()) + return false; + return true; +} + +static unsigned getBaseTypeSize(const Type *Ty) { + if (const ArrayType *ATy = dyn_cast(Ty)) + if (ATy->isUnsized()) + return getBaseTypeSize(ATy->getElementType()); + return TD.getTypeSize(Ty); +} + + +// Peephole Malloc instructions: we take a look at the use chain of the +// malloc instruction, and try to find out if the following conditions hold: +// 1. The malloc is of the form: 'malloc [sbyte], uint ' +// 2. The only users of the malloc are cast & add instructions +// 3. Of the cast instructions, there is only one destination pointer type +// [RTy] where the size of the pointed to object is equal to the number +// of bytes allocated. +// +// If these conditions hold, we convert the malloc to allocate an [RTy] +// element. TODO: This comment is out of date WRT arrays +// +static bool MallocConvertableToType(MallocInst *MI, const Type *Ty, + ValueTypeCache &CTMap) { + if (!MI->isArrayAllocation() || // No array allocation? + !isa(Ty)) return false; // Malloc always returns pointers + + // Deal with the type to allocate, not the pointer type... + Ty = cast(Ty)->getValueType(); + + // Analyze the number of bytes allocated... + analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize()); + + // Must have a scale or offset to analyze it... + if (!Expr.Offset && !Expr.Scale) return false; + + if (Expr.Offset && (Expr.Scale || Expr.Var)) { + // This is wierd, shouldn't happen, but if it does, I wanna know about it! + cerr << "LevelRaise.cpp: Crazy allocation detected!\n"; + return false; + } + + // Get the number of bytes allocated... + int SizeVal = getConstantValue(Expr.Offset ? Expr.Offset : Expr.Scale); + if (SizeVal <= 0) { + cerr << "malloc of a negative number???\n"; + return false; + } + unsigned Size = (unsigned)SizeVal; + unsigned ReqTypeSize = getBaseTypeSize(Ty); + + // Does the size of the allocated type match the number of bytes + // allocated? + // + if (ReqTypeSize == Size) + return true; + + // If not, it's possible that an array of constant size is being allocated. + // In this case, the Size will be a multiple of the data size. + // + if (!Expr.Offset) return false; // Offset must be set, not scale... + +#if 1 + return false; +#else // THIS CAN ONLY BE RUN VERY LATE, after several passes to make sure + // things are adequately raised! + // See if the allocated amount is a multiple of the type size... + if (Size/ReqTypeSize*ReqTypeSize != Size) + return false; // Nope. + + // Unfortunately things tend to be powers of two, so there may be + // many false hits. We don't want to optimistically assume that we + // have the right type on the first try, so scan the use list of the + // malloc instruction, looking for the cast to the biggest type... + // + for (Value::use_iterator I = MI->use_begin(), E = MI->use_end(); I != E; ++I) + if (CastInst *CI = dyn_cast(*I)) + if (const PointerType *PT = + dyn_cast(CI->getOperand(0)->getType())) + if (getBaseTypeSize(PT->getValueType()) > ReqTypeSize) + return false; // We found a type bigger than this one! + + return true; +#endif +} + +static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty, + const string &Name, ValueMapCache &VMC){ + BasicBlock *BB = MI->getParent(); + BasicBlock::iterator It = BB->end(); + + // Analyze the number of bytes allocated... + analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize()); + + const PointerType *AllocTy = cast(Ty); + const Type *ElType = AllocTy->getValueType(); + + if (Expr.Var && !isa(ElType)) { + ElType = ArrayType::get(AllocTy->getValueType()); + AllocTy = PointerType::get(ElType); + } + + // If the array size specifier is not an unsigned integer, insert a cast now. + if (Expr.Var && Expr.Var->getType() != Type::UIntTy) { + It = find(BB->getInstList().begin(), BB->getInstList().end(), MI); + CastInst *SizeCast = new CastInst(Expr.Var, Type::UIntTy); + It = BB->getInstList().insert(It, SizeCast)+1; + Expr.Var = SizeCast; + } + + // Check to see if they are allocating a constant sized array of a type... +#if 0 // THIS CAN ONLY BE RUN VERY LATE + if (!Expr.Var) { + unsigned OffsetAmount = (unsigned)getConstantValue(Expr.Offset); + unsigned DataSize = TD.getTypeSize(ElType); + + if (OffsetAmount > DataSize) // Allocate a sized array amount... + Expr.Var = ConstPoolUInt::get(Type::UIntTy, OffsetAmount/DataSize); + } +#endif + + Instruction *NewI = new MallocInst(AllocTy, Expr.Var, Name); + + if (AllocTy != Ty) { // Create a cast instruction to cast it to the correct ty + if (It == BB->end()) + It = find(BB->getInstList().begin(), BB->getInstList().end(), MI); + + // Insert the new malloc directly into the code ourselves + assert(It != BB->getInstList().end()); + It = BB->getInstList().insert(It, NewI)+1; + + // Return the cast as the value to use... + NewI = new CastInst(NewI, Ty); + } + + return NewI; +} + // ExpressionConvertableToType - Return true if it is possible bool ExpressionConvertableToType(Value *V, const Type *Ty, @@ -94,7 +208,7 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty, case Instruction::Cast: // We can convert the expr if the cast destination type is losslessly // convertable to the requested type. - if (!losslessCastableTypes(Ty, I->getType())) return false; + if (!Ty->isLosslesslyConvertableTo(I->getType())) return false; #if 1 // We also do not allow conversion of a cast that casts from a ptr to array // of X to a *X. For example: cast [4 x %List *] * %val to %List * * @@ -105,7 +219,7 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty, if (AT->getElementType() == DPT->getValueType()) return false; #endif - return true; + break; case Instruction::Add: case Instruction::Sub: @@ -123,12 +237,10 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty, case Instruction::Load: { LoadInst *LI = cast(I); - if (LI->hasIndices()) { + if (LI->hasIndices() && !AllIndicesZero(LI)) { // We can't convert a load expression if it has indices... unless they are // all zero. - const vector &CPV = LI->getIndices(); - for (unsigned i = 0; i < CPV.size(); ++i) - if (!CPV[i]->isNullValue()) return false; + return false; } if (!ExpressionConvertableToType(LI->getPointerOperand(), @@ -144,6 +256,12 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty, break; } + case Instruction::Malloc: + if (!MallocConvertableToType(cast(I), Ty, CTMap)) + return false; + break; + +#if 1 case Instruction::GetElementPtr: { // GetElementPtr's are directly convertable to a pointer type if they have // a number of zeros at the end. Because removing these values does not @@ -162,19 +280,24 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty, // index array. If there are, check to see if removing them causes us to // get to the right type... // - vector Indices = GEP->getIndices(); + vector Indices = GEP->copyIndices(); const Type *BaseType = GEP->getPointerOperand()->getType(); + const Type *ElTy = 0; - while (Indices.size() && + while (!Indices.empty() && isa(Indices.back()) && cast(Indices.back())->getValue() == 0) { Indices.pop_back(); - const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, + ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, true); if (ElTy == PTy->getValueType()) break; // Found a match!! + ElTy = 0; } + + if (ElTy) break; return false; // No match, maybe next time. } +#endif default: return false; @@ -184,11 +307,9 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty, // have this value converted. This makes use of the map to avoid infinite // recursion. // - if (isa(V)) { - for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) - if (!OperandConvertableToType(*I, V, Ty, CTMap)) - return false; - } + for (Value::use_iterator It = I->use_begin(), E = I->use_end(); It != E; ++It) + if (!OperandConvertableToType(*It, I, Ty, CTMap)) + return false; return true; } @@ -256,15 +377,8 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { case Instruction::Load: { LoadInst *LI = cast(I); -#ifndef NDEBUG - if (LI->hasIndices()) { - // We can't convert a load expression if it has indices... unless they are - // all zero. - const vector &CPV = LI->getIndices(); - for (unsigned i = 0; i < CPV.size(); ++i) - assert(CPV[i]->isNullValue() && "Load index not 0!"); - } -#endif + assert(!LI->hasIndices() || AllIndicesZero(LI)); + Res = new LoadInst(ConstPoolVal::getNullConstant(PointerType::get(Ty)), Name); VMC.ExprMap[I] = Res; @@ -293,6 +407,11 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { break; } + case Instruction::Malloc: { + Res = ConvertMallocToType(cast(I), Ty, Name, VMC); + break; + } + case Instruction::GetElementPtr: { // GetElementPtr's are directly convertable to a pointer type if they have // a number of zeros at the end. Because removing these values does not @@ -309,11 +428,11 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { // index array. If there are, check to see if removing them causes us to // get to the right type... // - vector Indices = GEP->getIndices(); + vector Indices = GEP->copyIndices(); const Type *BaseType = GEP->getPointerOperand()->getType(); const Type *PVTy = cast(Ty)->getValueType(); Res = 0; - while (Indices.size() && + while (!Indices.empty() && isa(Indices.back()) && cast(Indices.back())->getValue() == 0) { Indices.pop_back(); if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) { @@ -366,6 +485,8 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { cerr << "EXPR DELETING: " << (void*)I << " " << I; #endif BIL.remove(I); + VMC.OperandsMapped.erase(I); + VMC.ExprMap.erase(I); delete I; } @@ -374,15 +495,13 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { -// RetValConvertableToType - Return true if it is possible -bool RetValConvertableToType(Value *V, const Type *Ty, +// ValueConvertableToType - Return true if it is possible +bool ValueConvertableToType(Value *V, const Type *Ty, ValueTypeCache &ConvertedTypes) { ValueTypeCache::iterator I = ConvertedTypes.find(V); if (I != ConvertedTypes.end()) return I->second == Ty; ConvertedTypes[V] = Ty; - assert(isa(V) && "Can't convert ret val of non instruction"); - // It is safe to convert the specified value to the specified type IFF all of // the uses of the value can be converted to accept the new typed value. // @@ -405,8 +524,7 @@ bool RetValConvertableToType(Value *V, const Type *Ty, // static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, ValueTypeCache &CTMap) { - // TODO: IS THIS A BUG???? - if (V->getType() == Ty) return true; // Already the right type? + if (V->getType() == Ty) return true; // Operand already the right type? // Expression type must be holdable in a register. if (!isFirstClassType(Ty)) @@ -420,7 +538,7 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, assert(I->getOperand(0) == V); // We can convert the expr if the cast destination type is losslessly // convertable to the requested type. - if (!losslessCastableTypes(Ty, I->getOperand(0)->getType())) + if (!Ty->isLosslesslyConvertableTo(I->getOperand(0)->getType())) return false; #if 1 // We also do not allow conversion of a cast that casts from a ptr to array @@ -435,20 +553,24 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, return true; case Instruction::Add: - if (V == I->getOperand(0) && isa(I->getOperand(1))) { - Instruction *GEP = - getAddToGEPResult(Ty, cast(I->getOperand(1))->getOperand(0)); - if (GEP) { // If successful, this Add can be converted to a GEP. - const Type *RetTy = GEP->getType(); // Get the new type... - delete GEP; // We don't want the actual instruction yet... + if (V == I->getOperand(0) && isa(I->getOperand(1)) && + isa(Ty)) { + Value *IndexVal = cast(I->getOperand(1))->getOperand(0); + vector Indices; + if (const Type *ETy = ConvertableToGEP(Ty, IndexVal, Indices)) { + const Type *RetTy = PointerType::get(ETy); + // Only successful if we can convert this type to the required type - return RetValConvertableToType(I, RetTy, CTMap); + if (ValueConvertableToType(I, RetTy, CTMap)) { + CTMap[I] = RetTy; + return true; + } } } // FALLTHROUGH case Instruction::Sub: { Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0); - return RetValConvertableToType(I, Ty, CTMap) && + return ValueConvertableToType(I, Ty, CTMap) && ExpressionConvertableToType(OtherOp, Ty, CTMap); } case Instruction::SetEQ: @@ -461,38 +583,35 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, // FALL THROUGH case Instruction::Shl: assert(I->getOperand(0) == V); - return RetValConvertableToType(I, Ty, CTMap); + return ValueConvertableToType(I, Ty, CTMap); case Instruction::Load: - assert(I->getOperand(0) == V); + // Cannot convert the types of any subscripts... + if (I->getOperand(0) != V) return false; + if (const PointerType *PT = dyn_cast(Ty)) { LoadInst *LI = cast(I); - const Type *PVTy = PT->getValueType(); - - if (LI->hasIndices() || isa(PVTy)) + + if (LI->hasIndices() && !AllIndicesZero(LI)) return false; - if (!isFirstClassType(PVTy)) { - // They could be loading the first element of a structure type... - if (const StructType *ST = dyn_cast(PVTy)) { - unsigned Offset = 0; // No offset, get first leaf. - vector Offsets; // Discarded... - const Type *Ty = getStructOffsetType(ST, Offset, Offsets, false); - assert(Offset == 0 && "Offset changed from zero???"); - if (!isFirstClassType(Ty)) return false; + const Type *LoadedTy = PT->getValueType(); - // See if the leaf type is compatible with the old return type... - if (TD.getTypeSize(Ty) != TD.getTypeSize(LI->getType())) - return false; - return RetValConvertableToType(LI, Ty, CTMap); - } - return false; + // They could be loading the first element of a composite type... + if (const CompositeType *CT = dyn_cast(LoadedTy)) { + unsigned Offset = 0; // No offset, get first leaf. + vector Indices; // Discarded... + LoadedTy = getStructOffsetType(CT, Offset, Indices, false); + assert(Offset == 0 && "Offset changed from zero???"); } - if (TD.getTypeSize(PVTy) != TD.getTypeSize(LI->getType())) + if (!isFirstClassType(LoadedTy)) return false; - return RetValConvertableToType(LI, PVTy, CTMap); + if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType())) + return false; + + return ValueConvertableToType(LI, LoadedTy, CTMap); } return false; @@ -521,53 +640,50 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, return false; } + case Instruction::GetElementPtr: + // Convert a getelementptr [sbyte] * %reg111, uint 16 freely back to + // anything that is a pointer type... + // + if (I->getType() != PointerType::get(Type::SByteTy) || + I->getNumOperands() != 2 || V != I->getOperand(0) || + I->getOperand(1)->getType() != Type::UIntTy || !isa(Ty)) + return false; + return true; + case Instruction::PHINode: { PHINode *PN = cast(I); for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) if (!ExpressionConvertableToType(PN->getIncomingValue(i), Ty, CTMap)) return false; - return RetValConvertableToType(PN, Ty, CTMap); + return ValueConvertableToType(PN, Ty, CTMap); } -#if 0 - case Instruction::GetElementPtr: { - // GetElementPtr's are directly convertable to a pointer type if they have - // a number of zeros at the end. Because removing these values does not - // change the logical offset of the GEP, it is okay and fair to remove them. - // This can change this: - // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **> - // %t2 = cast %List * * %t1 to %List * - // into - // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *> - // - GetElementPtrInst *GEP = cast(I); - const PointerType *PTy = dyn_cast(Ty); - if (!PTy) return false; + case Instruction::Call: { + User::op_iterator OI = find(I->op_begin(), I->op_end(), V); + assert (OI != I->op_end() && "Not using value!"); + unsigned OpNum = OI - I->op_begin(); - // Check to see if there are zero elements that we can remove from the - // index array. If there are, check to see if removing them causes us to - // get to the right type... + if (OpNum == 0) + return false; // Can't convert method pointer type yet. FIXME + + const PointerType *MPtr = cast(I->getOperand(0)->getType()); + const MethodType *MTy = cast(MPtr->getValueType()); + if (!MTy->isVarArg()) return false; + + if ((OpNum-1) < MTy->getParamTypes().size()) + return false; // It's not in the varargs section... + + // If we get this far, we know the value is in the varargs section of the + // method! We can convert if we don't reinterpret the value... // - vector Indices = GEP->getIndices(); - const Type *BaseType = GEP->getPointerOperand()->getType(); - - while (Indices.size() && - cast(Indices.back())->getValue() == 0) { - Indices.pop_back(); - const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, - true); - if (ElTy == PTy->getValueType()) - return true; // Found a match!! - } - break; // No match, maybe next time. + return Ty->isLosslesslyConvertableTo(V->getType()); } -#endif } return false; } -void ConvertUsersType(Value *V, Value *NewVal, ValueMapCache &VMC) { +void ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC) { ValueHandle VH(VMC, V); unsigned NumUses = V->use_size(); @@ -616,12 +732,19 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, break; case Instruction::Add: - if (OldVal == I->getOperand(0) && isa(I->getOperand(1))) { - Res = getAddToGEPResult(NewVal->getType(), - cast(I->getOperand(1))->getOperand(0)); - if (Res) { // If successful, this Add should be converted to a GEP. + if (OldVal == I->getOperand(0) && isa(I->getOperand(1)) && + isa(NewTy)) { + Value *IndexVal = cast(I->getOperand(1))->getOperand(0); + vector Indices; + BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); + + if (const Type *ETy = ConvertableToGEP(NewTy, IndexVal, Indices, &It)) { + // If successful, convert the add to a GEP + const Type *RetTy = PointerType::get(ETy); // First operand is actually the given pointer... - Res->setOperand(0, NewVal); + Res = new GetElementPtrInst(NewVal, Indices); + assert(cast(Res->getType())->getValueType() == ETy && + "ConvertableToGEP broken!"); break; } } @@ -651,19 +774,21 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, case Instruction::Load: { assert(I->getOperand(0) == OldVal && isa(NewVal->getType())); - const Type *PVTy = cast(NewVal->getType())->getValueType(); - if (!isFirstClassType(PVTy)) { // Must be an indirect load then... - assert(isa(PVTy)); + const Type *LoadedTy = cast(NewVal->getType())->getValueType(); + + vector Indices; + + if (const CompositeType *CT = dyn_cast(LoadedTy)) { unsigned Offset = 0; // No offset, get first leaf. - vector Offsets; // Discarded... - const Type *Ty = getStructOffsetType(PVTy, Offset, Offsets, false); - Res = new LoadInst(NewVal, Offsets, Name); - } else { - Res = new LoadInst(NewVal, Name); + LoadedTy = getStructOffsetType(CT, Offset, Indices, false); } + assert(isFirstClassType(LoadedTy)); + + Res = new LoadInst(NewVal, Indices, Name); assert(isFirstClassType(Res->getType()) && "Load of structure or array!"); break; } + case Instruction::Store: { if (I->getOperand(0) == OldVal) { // Replace the source value const PointerType *NewPT = PointerType::get(NewTy); @@ -679,6 +804,27 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, break; } + + case Instruction::GetElementPtr: { + // Convert a getelementptr [sbyte] * %reg111, uint 16 freely back to + // anything that is a pointer type... + // + BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); + + // Insert a cast right before this instruction of the index value... + CastInst *CIdx = new CastInst(I->getOperand(1), NewTy); + It = BIL.insert(It, CIdx)+1; + + // Insert an add right before this instruction + Instruction *AddInst = BinaryOperator::create(Instruction::Add, NewVal, + CIdx, Name); + It = BIL.insert(It, AddInst)+1; + + // Finally, cast the result back to our previous type... + Res = new CastInst(AddInst, I->getType()); + break; + } + case Instruction::PHINode: { PHINode *OldPN = cast(I); PHINode *NewPN = new PHINode(NewTy, Name); @@ -695,44 +841,17 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, break; } -#if 0 - case Instruction::GetElementPtr: { - // GetElementPtr's are directly convertable to a pointer type if they have - // a number of zeros at the end. Because removing these values does not - // change the logical offset of the GEP, it is okay and fair to remove them. - // This can change this: - // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **> - // %t2 = cast %List * * %t1 to %List * - // into - // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *> - // - GetElementPtrInst *GEP = cast(I); + case Instruction::Call: { + Value *Meth = I->getOperand(0); + vector Params(I->op_begin()+1, I->op_end()); - // Check to see if there are zero elements that we can remove from the - // index array. If there are, check to see if removing them causes us to - // get to the right type... - // - vector Indices = GEP->getIndices(); - const Type *BaseType = GEP->getPointerOperand()->getType(); - const Type *PVTy = cast(Ty)->getValueType(); - Res = 0; - while (Indices.size() && - cast(Indices.back())->getValue() == 0) { - Indices.pop_back(); - if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) { - if (Indices.size() == 0) { - Res = new CastInst(GEP->getPointerOperand(), BaseType); // NOOP - } else { - Res = new GetElementPtrInst(GEP->getPointerOperand(), Indices, Name); - } - break; - } - } - assert(Res && "Didn't find match!"); - break; // No match, maybe next time. + vector::iterator OI = find(Params.begin(), Params.end(), OldVal); + assert (OI != Params.end() && "Not using value!"); + + *OI = NewVal; + Res = new CallInst(Meth, Params, Name); + break; } -#endif - default: assert(0 && "Expression convertable, but don't know how to convert?"); return; @@ -751,7 +870,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, VMC.ExprMap[I] = Res; if (I->getType() != Res->getType()) - ConvertUsersType(I, Res, VMC); + ConvertValueToNewType(I, Res, VMC); else { for (unsigned It = 0; It < I->use_size(); ) { User *Use = *(I->use_begin()+It); @@ -770,6 +889,8 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, cerr << "DELETING: " << (void*)I << " " << I; #endif BIL.remove(I); + VMC.OperandsMapped.erase(I); + VMC.ExprMap.erase(I); delete I; } else { for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); @@ -780,8 +901,8 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, } -ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V) : Instruction(Type::VoidTy, UserOp1, ""), - Cache(VMC) { +ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V) + : Instruction(Type::VoidTy, UserOp1, ""), Cache(VMC) { #ifdef DEBUG_EXPR_CONVERT cerr << "VH AQUIRING: " << (void*)V << " " << V; #endif