[mips][msa] Implement f16 support

The MIPS MSA ASE provides instructions to convert to and from half precision
floating point. This patch teaches the MIPS backend to treat f16 as a legal
type and how to promote such values to f32 for the usual set of operations.

As a result of this, the fexup[lr].w intrinsics no longer crash LLVM during
type legalization.

Reviewers: zoran.jovanvoic, vkalintiris

Differential Revision: https://reviews.llvm.org/D26398


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287349 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Simon Dardis 2016-11-18 16:17:44 +00:00
parent 0f37c5c43a
commit a60ff0d03c
4 changed files with 418 additions and 0 deletions

View File

@ -3731,6 +3731,56 @@ def SZ_D_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAllZero, v2i64,
def SZ_V_PSEUDO : MSA_CBRANCH_PSEUDO_DESC_BASE<MipsVAnyZero, v16i8,
MSA128B, NoItinerary>;
// Pseudoes used to implement transparent fp16 support.
let Predicates = [HasMSA] in {
def ST_F16 : MipsPseudo<(outs), (ins MSA128F16:$ws, mem_simm10:$addr),
[(store (f16 MSA128F16:$ws), (addrimm10:$addr))]> {
let usesCustomInserter = 1;
}
def LD_F16 : MipsPseudo<(outs MSA128F16:$ws), (ins mem_simm10:$addr),
[(set MSA128F16:$ws, (f16 (load addrimm10:$addr)))]> {
let usesCustomInserter = 1;
}
def MSA_FP_EXTEND_W_PSEUDO : MipsPseudo<(outs FGR32Opnd:$fd),
(ins MSA128F16:$ws),
[(set FGR32Opnd:$fd,
(f32 (fpextend MSA128F16:$ws)))]> {
let usesCustomInserter = 1;
}
def MSA_FP_ROUND_W_PSEUDO : MipsPseudo<(outs MSA128F16:$wd),
(ins FGR32Opnd:$fs),
[(set MSA128F16:$wd,
(f16 (fpround FGR32Opnd:$fs)))]> {
let usesCustomInserter = 1;
}
def MSA_FP_EXTEND_D_PSEUDO : MipsPseudo<(outs FGR64Opnd:$fd),
(ins MSA128F16:$ws),
[(set FGR64Opnd:$fd,
(f64 (fpextend MSA128F16:$ws)))]> {
let usesCustomInserter = 1;
}
def MSA_FP_ROUND_D_PSEUDO : MipsPseudo<(outs MSA128F16:$wd),
(ins FGR64Opnd:$fs),
[(set MSA128F16:$wd,
(f16 (fpround FGR64Opnd:$fs)))]> {
let usesCustomInserter = 1;
}
def : MipsPat<(MipsTruncIntFP MSA128F16:$ws),
(TRUNC_W_D64 (MSA_FP_EXTEND_D_PSEUDO MSA128F16:$ws))>;
def : MipsPat<(MipsFPCmp MSA128F16:$ws, MSA128F16:$wt, imm:$cond),
(FCMP_S32 (MSA_FP_EXTEND_W_PSEUDO MSA128F16:$ws),
(MSA_FP_EXTEND_W_PSEUDO MSA128F16:$wt), imm:$cond)>,
ISA_MIPS1_NOT_32R6_64R6;
}
// Vector extraction with fixed index.
//
// Extracting 32-bit values on MSA32 should always use COPY_S_W rather than

View File

@ -400,6 +400,8 @@ def FCC : RegisterClass<"Mips", [i32], 32, (sequence "FCC%u", 0, 7)>,
// This class allows us to represent this in codegen patterns.
def FGRCC : RegisterClass<"Mips", [i32], 32, (sequence "F%u", 0, 31)>;
def MSA128F16 : RegisterClass<"Mips", [f16], 128, (sequence "W%u", 0, 31)>;
def MSA128B: RegisterClass<"Mips", [v16i8], 128,
(sequence "W%u", 0, 31)>;
def MSA128H: RegisterClass<"Mips", [v8i16, v8f16], 128,
@ -646,6 +648,10 @@ def COP3Opnd : RegisterOperand<COP3> {
let ParserMatchClass = COP3AsmOperand;
}
def MSA128F16Opnd : RegisterOperand<MSA128F16> {
let ParserMatchClass = MSA128AsmOperand;
}
def MSA128BOpnd : RegisterOperand<MSA128B> {
let ParserMatchClass = MSA128AsmOperand;
}

View File

@ -92,6 +92,44 @@ MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
// f16 is a storage-only type, always promote it to f32.
addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
setOperationAction(ISD::SETCC, MVT::f16, Promote);
setOperationAction(ISD::BR_CC, MVT::f16, Promote);
setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
setOperationAction(ISD::SELECT, MVT::f16, Promote);
setOperationAction(ISD::FADD, MVT::f16, Promote);
setOperationAction(ISD::FSUB, MVT::f16, Promote);
setOperationAction(ISD::FMUL, MVT::f16, Promote);
setOperationAction(ISD::FDIV, MVT::f16, Promote);
setOperationAction(ISD::FREM, MVT::f16, Promote);
setOperationAction(ISD::FMA, MVT::f16, Promote);
setOperationAction(ISD::FNEG, MVT::f16, Promote);
setOperationAction(ISD::FABS, MVT::f16, Promote);
setOperationAction(ISD::FCEIL, MVT::f16, Promote);
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
setOperationAction(ISD::FCOS, MVT::f16, Promote);
setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
setOperationAction(ISD::FPOW, MVT::f16, Promote);
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
setOperationAction(ISD::FRINT, MVT::f16, Promote);
setOperationAction(ISD::FSIN, MVT::f16, Promote);
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
setOperationAction(ISD::FSQRT, MVT::f16, Promote);
setOperationAction(ISD::FEXP, MVT::f16, Promote);
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
setOperationAction(ISD::FLOG, MVT::f16, Promote);
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
setOperationAction(ISD::FROUND, MVT::f16, Promote);
setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::SRA);
@ -1172,6 +1210,18 @@ MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
return emitFEXP2_W_1(MI, BB);
case Mips::FEXP2_D_1_PSEUDO:
return emitFEXP2_D_1(MI, BB);
case Mips::ST_F16:
return emitST_F16_PSEUDO(MI, BB);
case Mips::LD_F16:
return emitLD_F16_PSEUDO(MI, BB);
case Mips::MSA_FP_EXTEND_W_PSEUDO:
return emitFPEXTEND_PSEUDO(MI, BB, false);
case Mips::MSA_FP_ROUND_W_PSEUDO:
return emitFPROUND_PSEUDO(MI, BB, false);
case Mips::MSA_FP_EXTEND_D_PSEUDO:
return emitFPEXTEND_PSEUDO(MI, BB, true);
case Mips::MSA_FP_ROUND_D_PSEUDO:
return emitFPROUND_PSEUDO(MI, BB, true);
}
}
@ -3372,6 +3422,304 @@ MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
return BB;
}
// Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
// register.
//
// STF16 MSA128F16:$wd, mem_simm10:$addr
// =>
// copy_u.h $rtemp,$wd[0]
// sh $rtemp, $addr
//
// Safety: We can't use st.h & co as they would over write the memory after
// the destination. It would require half floats be allocated 16 bytes(!) of
// space.
MachineBasicBlock *
MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned Ws = MI.getOperand(0).getReg();
unsigned Rt = MI.getOperand(1).getReg();
const MachineMemOperand &MMO = **MI.memoperands_begin();
unsigned Imm = MMO.getOffset();
// Caution: A load via the GOT can expand to a GPR32 operand, a load via
// spill and reload can expand as a GPR64 operand. Examine the
// operand in detail and default to ABI.
const TargetRegisterClass *RC =
MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
: (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
: &Mips::GPR64RegClass);
const bool UsingMips32 = RC == &Mips::GPR32RegClass;
unsigned Rs = RegInfo.createVirtualRegister(RC);
BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
.addReg(Rs)
.addReg(Rt)
.addImm(Imm)
.addMemOperand(BB->getParent()->getMachineMemOperand(
&MMO, MMO.getOffset(), MMO.getSize()));
MI.eraseFromParent();
return BB;
}
// Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
//
// LD_F16 MSA128F16:$wd, mem_simm10:$addr
// =>
// lh $rtemp, $addr
// fill.h $wd, $rtemp
//
// Safety: We can't use ld.h & co as they over-read from the source.
// Additionally, if the address is not modulo 16, 2 cases can occur:
// a) Segmentation fault as the load instruction reads from a memory page
// memory it's not supposed to.
// b) The load crosses an implementation specific boundary, requiring OS
// intervention.
//
MachineBasicBlock *
MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned Wd = MI.getOperand(0).getReg();
// Caution: A load via the GOT can expand to a GPR32 operand, a load via
// spill and reload can expand as a GPR64 operand. Examine the
// operand in detail and default to ABI.
const TargetRegisterClass *RC =
MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
: (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
: &Mips::GPR64RegClass);
const bool UsingMips32 = RC == &Mips::GPR32RegClass;
unsigned Rt = RegInfo.createVirtualRegister(RC);
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
for (unsigned i = 1; i < MI.getNumOperands(); i++)
MIB.addOperand(MI.getOperand(i));
BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
MI.eraseFromParent();
return BB;
}
// Emit the FPROUND_PSEUDO instruction.
//
// Round an FGR64Opnd, FGR32Opnd to an f16.
//
// Safety: Cycle the operand through the GPRs so the result always ends up
// the correct MSA register.
//
// FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
// / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
// (which they can be, as the MSA registers are defined to alias the
// FPU's 64 bit and 32 bit registers) the result can be accessed using
// the correct register class. That requires operands be tie-able across
// register classes which have a sub/super register class relationship.
//
// For FPG32Opnd:
//
// FPROUND MSA128F16:$wd, FGR32Opnd:$fs
// =>
// mfc1 $rtemp, $fs
// fill.w $rtemp, $wtemp
// fexdo.w $wd, $wtemp, $wtemp
//
// For FPG64Opnd on mips32r2+:
//
// FPROUND MSA128F16:$wd, FGR64Opnd:$fs
// =>
// mfc1 $rtemp, $fs
// fill.w $rtemp, $wtemp
// mfhc1 $rtemp2, $fs
// insert.w $wtemp[1], $rtemp2
// insert.w $wtemp[3], $rtemp2
// fexdo.w $wtemp2, $wtemp, $wtemp
// fexdo.h $wd, $temp2, $temp2
//
// For FGR64Opnd on mips64r2+:
//
// FPROUND MSA128F16:$wd, FGR64Opnd:$fs
// =>
// dmfc1 $rtemp, $fs
// fill.d $rtemp, $wtemp
// fexdo.w $wtemp2, $wtemp, $wtemp
// fexdo.h $wd, $wtemp2, $wtemp2
//
// Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
// undef bits are "just right" and the exception enable bits are
// set. By using fill.w to replicate $fs into all elements over
// insert.w for one element, we avoid that potiential case. If
// fexdo.[hw] causes an exception in, the exception is valid and it
// occurs for all elements.
//
MachineBasicBlock *
MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
MachineBasicBlock *BB,
bool IsFGR64) const {
// Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
// here. It's technically doable to support MIPS32 here, but the ISA forbids
// it.
assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned Wd = MI.getOperand(0).getReg();
unsigned Fs = MI.getOperand(1).getReg();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
const TargetRegisterClass *GPRRC =
IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
unsigned MFC1Opc = IsFGR64onMips64 ? Mips::DMFC1 : Mips::MFC1;
unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
// Perform the register class copy as mentioned above.
unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC);
BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
unsigned WPHI = Wtemp;
if (!Subtarget.hasMips64() && IsFGR64) {
unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
unsigned Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
.addReg(Wtemp)
.addReg(Rtemp2)
.addImm(1);
BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
.addReg(Wtemp2)
.addReg(Rtemp2)
.addImm(3);
WPHI = Wtemp3;
}
if (IsFGR64) {
unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
.addReg(WPHI)
.addReg(WPHI);
WPHI = Wtemp2;
}
BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
MI.eraseFromParent();
return BB;
}
// Emit the FPEXTEND_PSEUDO instruction.
//
// Expand an f16 to either a FGR32Opnd or FGR64Opnd.
//
// Safety: Cycle the result through the GPRs so the result always ends up
// the correct floating point register.
//
// FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
// / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
// (which they can be, as the MSA registers are defined to alias the
// FPU's 64 bit and 32 bit registers) the result can be accessed using
// the correct register class. That requires operands be tie-able across
// register classes which have a sub/super register class relationship. I
// haven't checked.
//
// For FGR32Opnd:
//
// FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
// =>
// fexupr.w $wtemp, $ws
// copy_s.w $rtemp, $ws[0]
// mtc1 $rtemp, $fd
//
// For FGR64Opnd on Mips64:
//
// FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
// =>
// fexupr.w $wtemp, $ws
// fexupr.d $wtemp2, $wtemp
// copy_s.d $rtemp, $wtemp2s[0]
// dmtc1 $rtemp, $fd
//
// For FGR64Opnd on Mips32:
//
// FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
// =>
// fexupr.w $wtemp, $ws
// fexupr.d $wtemp2, $wtemp
// copy_s.w $rtemp, $wtemp2[0]
// mtc1 $rtemp, $ftemp
// copy_s.w $rtemp2, $wtemp2[1]
// $fd = mthc1 $rtemp2, $ftemp
//
MachineBasicBlock *
MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
MachineBasicBlock *BB,
bool IsFGR64) const {
// Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
// here. It's technically doable to support MIPS32 here, but the ISA forbids
// it.
assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned Fd = MI.getOperand(0).getReg();
unsigned Ws = MI.getOperand(1).getReg();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetRegisterClass *GPRRC =
IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
unsigned MTC1Opc = IsFGR64onMips64 ? Mips::DMTC1 : Mips::MTC1;
unsigned COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
unsigned WPHI = Wtemp;
BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
if (IsFGR64) {
WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
}
// Perform the safety regclass copy mentioned above.
unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC);
unsigned FPRPHI = IsFGR64onMips32
? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
: Fd;
BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
if (IsFGR64onMips32) {
unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
.addReg(WPHI)
.addImm(1);
BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
.addReg(FPRPHI)
.addReg(Rtemp2);
}
MI.eraseFromParent();
return BB;
}
// Emit the FEXP2_W_1 pseudo instructions.
//
// fexp2_w_1_pseudo $wd, $wt

View File

@ -111,6 +111,20 @@ namespace llvm {
/// \brief Emit the FEXP2_D_1 pseudo instructions.
MachineBasicBlock *emitFEXP2_D_1(MachineInstr &MI,
MachineBasicBlock *BB) const;
/// \brief Emit the FILL_FW pseudo instruction
MachineBasicBlock *emitLD_F16_PSEUDO(MachineInstr &MI,
MachineBasicBlock *BB) const;
/// \brief Emit the FILL_FD pseudo instruction
MachineBasicBlock *emitST_F16_PSEUDO(MachineInstr &MI,
MachineBasicBlock *BB) const;
/// \brief Emit the FEXP2_W_1 pseudo instructions.
MachineBasicBlock *emitFPEXTEND_PSEUDO(MachineInstr &MI,
MachineBasicBlock *BB,
bool IsFGR64) const;
/// \brief Emit the FEXP2_D_1 pseudo instructions.
MachineBasicBlock *emitFPROUND_PSEUDO(MachineInstr &MI,
MachineBasicBlock *BBi,
bool IsFGR64) const;
};
}