mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-25 20:59:51 +00:00
LoopVectorizer: Pass OperandValueKind information to the cost model
Pass down the fact that an operand is going to be a vector of constants. This should bring the performance of MultiSource/Benchmarks/PAQ8p/paq8p on x86 back. It had degraded to scalar performance due to my pervious shift cost change that made all shifts expensive on x86. radar://13576547 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178809 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
2537f3c659
commit
ac2cc0170f
@ -3331,8 +3331,19 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
|
||||
case Instruction::AShr:
|
||||
case Instruction::And:
|
||||
case Instruction::Or:
|
||||
case Instruction::Xor:
|
||||
return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
|
||||
case Instruction::Xor: {
|
||||
// Certain instructions can be cheaper to vectorize if they have a constant
|
||||
// second vector operand. One example of this are shifts on x86.
|
||||
TargetTransformInfo::OperandValueKind Op1VK =
|
||||
TargetTransformInfo::OK_AnyValue;
|
||||
TargetTransformInfo::OperandValueKind Op2VK =
|
||||
TargetTransformInfo::OK_AnyValue;
|
||||
|
||||
if (isa<ConstantInt>(I->getOperand(1)))
|
||||
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
|
||||
|
||||
return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
|
||||
}
|
||||
case Instruction::Select: {
|
||||
SelectInst *SI = cast<SelectInst>(I);
|
||||
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
|
||||
|
28
test/Transforms/LoopVectorize/X86/constant-vector-operand.ll
Normal file
28
test/Transforms/LoopVectorize/X86/constant-vector-operand.ll
Normal file
@ -0,0 +1,28 @@
|
||||
; RUN: opt -mtriple=x86_64-apple-darwin -mcpu=core2 -loop-vectorize -dce -instcombine -S < %s | FileCheck %s
|
||||
|
||||
@B = common global [1024 x i32] zeroinitializer, align 16
|
||||
@A = common global [1024 x i32] zeroinitializer, align 16
|
||||
|
||||
; We use to not vectorize this loop because the shift was deemed to expensive.
|
||||
; Now that we differentiate shift cost base on the operand value kind, we will
|
||||
; vectorize this loop.
|
||||
; CHECK: ashr <4 x i32>
|
||||
define void @f() {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body:
|
||||
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
|
||||
%arrayidx = getelementptr inbounds [1024 x i32]* @B, i64 0, i64 %indvars.iv
|
||||
%0 = load i32* %arrayidx, align 4
|
||||
%shl = ashr i32 %0, 3
|
||||
%arrayidx2 = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
|
||||
store i32 %shl, i32* %arrayidx2, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %for.end, label %for.body
|
||||
|
||||
for.end:
|
||||
ret void
|
||||
}
|
Loading…
Reference in New Issue
Block a user