mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-26 22:45:05 +00:00
Unify the target opcode enum in TargetOpcodes.h and the FixedInstrs array in
CodeGenTarget.cpp to avoid the ordering dependence. NFCI. Differential Revision: http://reviews.llvm.org/D16826 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259726 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f38d8c901e
commit
af50aacb9a
153
include/llvm/Target/TargetOpcodes.def
Normal file
153
include/llvm/Target/TargetOpcodes.def
Normal file
@ -0,0 +1,153 @@
|
||||
//===-- llvm/Target/TargetOpcodes.def - Target Indep Opcodes ------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the target independent instruction opcodes.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// NOTE: NO INCLUDE GUARD DESIRED!
|
||||
|
||||
/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
|
||||
///
|
||||
#ifndef HANDLE_TARGET_OPCODE
|
||||
#define HANDLE_TARGET_OPCODE(OPC, NUM)
|
||||
#endif
|
||||
|
||||
/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
|
||||
///
|
||||
#ifndef HANDLE_TARGET_OPCODE_MARKER
|
||||
#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
|
||||
#endif
|
||||
|
||||
/// Every instruction defined here must also appear in Target.td.
|
||||
///
|
||||
HANDLE_TARGET_OPCODE(PHI, 0)
|
||||
HANDLE_TARGET_OPCODE(INLINEASM, 1)
|
||||
HANDLE_TARGET_OPCODE(CFI_INSTRUCTION, 2)
|
||||
HANDLE_TARGET_OPCODE(EH_LABEL, 3)
|
||||
HANDLE_TARGET_OPCODE(GC_LABEL, 4)
|
||||
|
||||
/// KILL - This instruction is a noop that is used only to adjust the
|
||||
/// liveness of registers. This can be useful when dealing with
|
||||
/// sub-registers.
|
||||
HANDLE_TARGET_OPCODE(KILL, 5)
|
||||
|
||||
/// EXTRACT_SUBREG - This instruction takes two operands: a register
|
||||
/// that has subregisters, and a subregister index. It returns the
|
||||
/// extracted subregister value. This is commonly used to implement
|
||||
/// truncation operations on target architectures which support it.
|
||||
HANDLE_TARGET_OPCODE(EXTRACT_SUBREG, 6)
|
||||
|
||||
/// INSERT_SUBREG - This instruction takes three operands: a register that
|
||||
/// has subregisters, a register providing an insert value, and a
|
||||
/// subregister index. It returns the value of the first register with the
|
||||
/// value of the second register inserted. The first register is often
|
||||
/// defined by an IMPLICIT_DEF, because it is commonly used to implement
|
||||
/// anyext operations on target architectures which support it.
|
||||
HANDLE_TARGET_OPCODE(INSERT_SUBREG, 7)
|
||||
|
||||
/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
|
||||
HANDLE_TARGET_OPCODE(IMPLICIT_DEF, 8)
|
||||
|
||||
/// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except that
|
||||
/// the first operand is an immediate integer constant. This constant is
|
||||
/// often zero, because it is commonly used to assert that the instruction
|
||||
/// defining the register implicitly clears the high bits.
|
||||
HANDLE_TARGET_OPCODE(SUBREG_TO_REG, 9)
|
||||
|
||||
/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
|
||||
/// register-to-register copy into a specific register class. This is only
|
||||
/// used between instruction selection and MachineInstr creation, before
|
||||
/// virtual registers have been created for all the instructions, and it's
|
||||
/// only needed in cases where the register classes implied by the
|
||||
/// instructions are insufficient. It is emitted as a COPY MachineInstr.
|
||||
HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS, 10)
|
||||
|
||||
/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
|
||||
HANDLE_TARGET_OPCODE(DBG_VALUE, 11)
|
||||
|
||||
/// REG_SEQUENCE - This variadic instruction is used to form a register that
|
||||
/// represents a consecutive sequence of sub-registers. It's used as a
|
||||
/// register coalescing / allocation aid and must be eliminated before code
|
||||
/// emission.
|
||||
// In SDNode form, the first operand encodes the register class created by
|
||||
// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
|
||||
// pair. Once it has been lowered to a MachineInstr, the regclass operand
|
||||
// is no longer present.
|
||||
/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
|
||||
/// After register coalescing references of v1024 should be replace with
|
||||
/// v1027:3, v1025 with v1027:4, etc.
|
||||
HANDLE_TARGET_OPCODE(REG_SEQUENCE, 12)
|
||||
|
||||
/// COPY - Target-independent register copy. This instruction can also be
|
||||
/// used to copy between subregisters of virtual registers.
|
||||
HANDLE_TARGET_OPCODE(COPY, 13)
|
||||
|
||||
/// BUNDLE - This instruction represents an instruction bundle. Instructions
|
||||
/// which immediately follow a BUNDLE instruction which are marked with
|
||||
/// 'InsideBundle' flag are inside the bundle.
|
||||
HANDLE_TARGET_OPCODE(BUNDLE, 14)
|
||||
|
||||
/// Lifetime markers.
|
||||
HANDLE_TARGET_OPCODE(LIFETIME_START, 15)
|
||||
HANDLE_TARGET_OPCODE(LIFETIME_END, 16)
|
||||
|
||||
/// A Stackmap instruction captures the location of live variables at its
|
||||
/// position in the instruction stream. It is followed by a shadow of bytes
|
||||
/// that must lie within the function and not contain another stackmap.
|
||||
HANDLE_TARGET_OPCODE(STACKMAP, 17)
|
||||
|
||||
/// Patchable call instruction - this instruction represents a call to a
|
||||
/// constant address, followed by a series of NOPs. It is intended to
|
||||
/// support optimizations for dynamic languages (such as javascript) that
|
||||
/// rewrite calls to runtimes with more efficient code sequences.
|
||||
/// This also implies a stack map.
|
||||
HANDLE_TARGET_OPCODE(PATCHPOINT, 18)
|
||||
|
||||
/// This pseudo-instruction loads the stack guard value. Targets which need
|
||||
/// to prevent the stack guard value or address from being spilled to the
|
||||
/// stack should override TargetLowering::emitLoadStackGuardNode and
|
||||
/// additionally expand this pseudo after register allocation.
|
||||
HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD, 19)
|
||||
|
||||
/// Call instruction with associated vm state for deoptimization and list
|
||||
/// of live pointers for relocation by the garbage collector. It is
|
||||
/// intended to support garbage collection with fully precise relocating
|
||||
/// collectors and deoptimizations in either the callee or caller.
|
||||
HANDLE_TARGET_OPCODE(STATEPOINT, 20)
|
||||
|
||||
/// Instruction that records the offset of a local stack allocation passed to
|
||||
/// llvm.localescape. It has two arguments: the symbol for the label and the
|
||||
/// frame index of the local stack allocation.
|
||||
HANDLE_TARGET_OPCODE(LOCAL_ESCAPE, 21)
|
||||
|
||||
/// Loading instruction that may page fault, bundled with associated
|
||||
/// information on how to handle such a page fault. It is intended to support
|
||||
/// "zero cost" null checks in managed languages by allowing LLVM to fold
|
||||
/// comparisons into existing memory operations.
|
||||
HANDLE_TARGET_OPCODE(FAULTING_LOAD_OP, 22)
|
||||
|
||||
/// The following generic opcodes are not supposed to appear after ISel.
|
||||
/// This is something we might want to relax, but for now, this is convenient
|
||||
/// to produce diagnostics.
|
||||
|
||||
/// Generic ADD instruction. This is an integer add.
|
||||
HANDLE_TARGET_OPCODE(G_ADD, 23)
|
||||
HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
|
||||
|
||||
// TODO: Add more generic opcodes as we move along.
|
||||
|
||||
/// Marker for the end of the generic opcode.
|
||||
/// This is used to check if an opcode is in the range of the
|
||||
/// generic opcodes.
|
||||
HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_ADD)
|
||||
|
||||
/// BUILTIN_OP_END - This must be the last enum value in this list.
|
||||
/// The target-specific post-isel opcode values start here.
|
||||
HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
|
@ -18,138 +18,11 @@ namespace llvm {
|
||||
|
||||
/// Invariant opcodes: All instruction sets have these as their low opcodes.
|
||||
///
|
||||
/// Every instruction defined here must also appear in Target.td and the order
|
||||
/// must be the same as in CodeGenTarget.cpp.
|
||||
///
|
||||
namespace TargetOpcode {
|
||||
enum {
|
||||
PHI = 0,
|
||||
INLINEASM = 1,
|
||||
CFI_INSTRUCTION = 2,
|
||||
EH_LABEL = 3,
|
||||
GC_LABEL = 4,
|
||||
|
||||
/// KILL - This instruction is a noop that is used only to adjust the
|
||||
/// liveness of registers. This can be useful when dealing with
|
||||
/// sub-registers.
|
||||
KILL = 5,
|
||||
|
||||
/// EXTRACT_SUBREG - This instruction takes two operands: a register
|
||||
/// that has subregisters, and a subregister index. It returns the
|
||||
/// extracted subregister value. This is commonly used to implement
|
||||
/// truncation operations on target architectures which support it.
|
||||
EXTRACT_SUBREG = 6,
|
||||
|
||||
/// INSERT_SUBREG - This instruction takes three operands: a register that
|
||||
/// has subregisters, a register providing an insert value, and a
|
||||
/// subregister index. It returns the value of the first register with the
|
||||
/// value of the second register inserted. The first register is often
|
||||
/// defined by an IMPLICIT_DEF, because it is commonly used to implement
|
||||
/// anyext operations on target architectures which support it.
|
||||
INSERT_SUBREG = 7,
|
||||
|
||||
/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
|
||||
IMPLICIT_DEF = 8,
|
||||
|
||||
/// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except that
|
||||
/// the first operand is an immediate integer constant. This constant is
|
||||
/// often zero, because it is commonly used to assert that the instruction
|
||||
/// defining the register implicitly clears the high bits.
|
||||
SUBREG_TO_REG = 9,
|
||||
|
||||
/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
|
||||
/// register-to-register copy into a specific register class. This is only
|
||||
/// used between instruction selection and MachineInstr creation, before
|
||||
/// virtual registers have been created for all the instructions, and it's
|
||||
/// only needed in cases where the register classes implied by the
|
||||
/// instructions are insufficient. It is emitted as a COPY MachineInstr.
|
||||
COPY_TO_REGCLASS = 10,
|
||||
|
||||
/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
|
||||
DBG_VALUE = 11,
|
||||
|
||||
/// REG_SEQUENCE - This variadic instruction is used to form a register that
|
||||
/// represents a consecutive sequence of sub-registers. It's used as a
|
||||
/// register coalescing / allocation aid and must be eliminated before code
|
||||
/// emission.
|
||||
// In SDNode form, the first operand encodes the register class created by
|
||||
// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
|
||||
// pair. Once it has been lowered to a MachineInstr, the regclass operand
|
||||
// is no longer present.
|
||||
/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
|
||||
/// After register coalescing references of v1024 should be replace with
|
||||
/// v1027:3, v1025 with v1027:4, etc.
|
||||
REG_SEQUENCE = 12,
|
||||
|
||||
/// COPY - Target-independent register copy. This instruction can also be
|
||||
/// used to copy between subregisters of virtual registers.
|
||||
COPY = 13,
|
||||
|
||||
/// BUNDLE - This instruction represents an instruction bundle. Instructions
|
||||
/// which immediately follow a BUNDLE instruction which are marked with
|
||||
/// 'InsideBundle' flag are inside the bundle.
|
||||
BUNDLE = 14,
|
||||
|
||||
/// Lifetime markers.
|
||||
LIFETIME_START = 15,
|
||||
LIFETIME_END = 16,
|
||||
|
||||
/// A Stackmap instruction captures the location of live variables at its
|
||||
/// position in the instruction stream. It is followed by a shadow of bytes
|
||||
/// that must lie within the function and not contain another stackmap.
|
||||
STACKMAP = 17,
|
||||
|
||||
/// Patchable call instruction - this instruction represents a call to a
|
||||
/// constant address, followed by a series of NOPs. It is intended to
|
||||
/// support optimizations for dynamic languages (such as javascript) that
|
||||
/// rewrite calls to runtimes with more efficient code sequences.
|
||||
/// This also implies a stack map.
|
||||
PATCHPOINT = 18,
|
||||
|
||||
/// This pseudo-instruction loads the stack guard value. Targets which need
|
||||
/// to prevent the stack guard value or address from being spilled to the
|
||||
/// stack should override TargetLowering::emitLoadStackGuardNode and
|
||||
/// additionally expand this pseudo after register allocation.
|
||||
LOAD_STACK_GUARD = 19,
|
||||
|
||||
/// Call instruction with associated vm state for deoptimization and list
|
||||
/// of live pointers for relocation by the garbage collector. It is
|
||||
/// intended to support garbage collection with fully precise relocating
|
||||
/// collectors and deoptimizations in either the callee or caller.
|
||||
STATEPOINT = 20,
|
||||
|
||||
/// Instruction that records the offset of a local stack allocation passed to
|
||||
/// llvm.localescape. It has two arguments: the symbol for the label and the
|
||||
/// frame index of the local stack allocation.
|
||||
LOCAL_ESCAPE = 21,
|
||||
|
||||
/// Loading instruction that may page fault, bundled with associated
|
||||
/// information on how to handle such a page fault. It is intended to support
|
||||
/// "zero cost" null checks in managed languages by allowing LLVM to fold
|
||||
/// comparisons into existing memory operations.
|
||||
FAULTING_LOAD_OP = 22,
|
||||
|
||||
/// The following generic opcodes are not supposed to appear after ISel.
|
||||
/// This is something we might want to relax, but for now, this is convenient
|
||||
/// to produce diagnostic.
|
||||
PRE_ISEL_GENERIC_OPCODE_START,
|
||||
// Generic opcodes used before ISel are here.
|
||||
|
||||
/// Generic ADD instruction. This is an integer add.
|
||||
G_ADD = PRE_ISEL_GENERIC_OPCODE_START,
|
||||
// TODO: Add more generic opcodes as we move along.
|
||||
// FIXME: Right now, we have to manually add any new opcode in
|
||||
// CodeGenTarget.cpp for TableGen to pick them up.
|
||||
// Moreover the order must match.
|
||||
|
||||
/// Marker for the end of the generic opcode.
|
||||
/// This is used to check if an opcode is in the range of the
|
||||
/// generic opcodes.
|
||||
PRE_ISEL_GENERIC_OPCODE_END,
|
||||
|
||||
/// BUILTIN_OP_END - This must be the last enum value in this list.
|
||||
/// The target-specific post-isel opcode values start here.
|
||||
GENERIC_OP_END = PRE_ISEL_GENERIC_OPCODE_END,
|
||||
#define HANDLE_TARGET_OPCODE(OPC, NUM) OPC = NUM,
|
||||
#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC) IDENT = OPC,
|
||||
#include "llvm/Target/TargetOpcodes.def"
|
||||
};
|
||||
} // end namespace TargetOpcode
|
||||
} // end namespace llvm
|
||||
|
@ -300,19 +300,9 @@ GetInstByName(const char *Name,
|
||||
/// \brief Return all of the instructions defined by the target, ordered by
|
||||
/// their enum value.
|
||||
void CodeGenTarget::ComputeInstrsByEnum() const {
|
||||
// The ordering here must match the ordering in TargetOpcodes.h.
|
||||
// FIXME: It would be nice to have the opcode directly extracted
|
||||
// to avoid potential errors. At the very, least a compile time
|
||||
// error would be appreciated if the order does not match.
|
||||
static const char *const FixedInstrs[] = {
|
||||
"PHI", "INLINEASM", "CFI_INSTRUCTION", "EH_LABEL",
|
||||
"GC_LABEL", "KILL", "EXTRACT_SUBREG", "INSERT_SUBREG",
|
||||
"IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE",
|
||||
"REG_SEQUENCE", "COPY", "BUNDLE", "LIFETIME_START",
|
||||
"LIFETIME_END", "STACKMAP", "PATCHPOINT", "LOAD_STACK_GUARD",
|
||||
"STATEPOINT", "LOCAL_ESCAPE", "FAULTING_LOAD_OP",
|
||||
// Generic opcodes for GlobalISel start here.
|
||||
"G_ADD",
|
||||
#define HANDLE_TARGET_OPCODE(OPC, NUM) #OPC,
|
||||
#include "llvm/Target/TargetOpcodes.def"
|
||||
nullptr};
|
||||
const auto &Insts = getInstructions();
|
||||
for (const char *const *p = FixedInstrs; *p; ++p) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user