[SystemZ] Fix encoding of MVCK and .insn ss

LLVM currently treats the first operand of MVCK as if it were a
regular base+index+displacement address.  However, it is in fact
a base+displacement combined with a length register field.

While the two might look syntactically similar, there are two
semantic differences:
- %r0 is a valid length register, even though it cannot be used
  as an index register.
- In an expression with just a single register like 0(%rX), the
  register is treated as base with normal addresses, while it is
  treated as the length register (with an empty base) for MVCK.

Fixed by adding a new operand parser class BDRAddr and reworking
the assembler parser to distinguish between address + length
register operands and regular addresses.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285574 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Ulrich Weigand 2016-10-31 14:21:36 +00:00
parent 3aa311854a
commit b12a0a51d5
12 changed files with 259 additions and 107 deletions

View File

@ -50,6 +50,7 @@ enum MemoryKind {
BDMem,
BDXMem,
BDLMem,
BDRMem,
BDVMem
};
@ -99,7 +100,10 @@ private:
unsigned MemKind : 4;
unsigned RegKind : 4;
const MCExpr *Disp;
const MCExpr *Length;
union {
const MCExpr *Imm;
unsigned Reg;
} Length;
};
// Imm is an immediate operand, and Sym is an optional TLS symbol
@ -164,15 +168,18 @@ public:
}
static std::unique_ptr<SystemZOperand>
createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
const MCExpr *Disp, unsigned Index, const MCExpr *Length,
SMLoc StartLoc, SMLoc EndLoc) {
const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
Op->Mem.MemKind = MemKind;
Op->Mem.RegKind = RegKind;
Op->Mem.Base = Base;
Op->Mem.Index = Index;
Op->Mem.Disp = Disp;
Op->Mem.Length = Length;
if (MemKind == BDLMem)
Op->Mem.Length.Imm = LengthImm;
if (MemKind == BDRMem)
Op->Mem.Length.Reg = LengthReg;
return Op;
}
static std::unique_ptr<SystemZOperand>
@ -249,14 +256,7 @@ public:
return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
}
bool isMemDisp12Len8(RegisterKind RegKind) const {
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length, 1, 0x100);
}
void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDVMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Index));
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
}
// Override MCParsedAsmOperand.
@ -297,7 +297,21 @@ public:
assert(isMem(BDLMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
addExpr(Inst, Mem.Length);
addExpr(Inst, Mem.Length.Imm);
}
void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDRMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
}
void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDVMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Index));
}
void addImmTLSOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
@ -331,6 +345,7 @@ public:
bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); }
bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); }
bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); }
bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); }
bool isU1Imm() const { return isImm(0, 1); }
bool isU2Imm() const { return isImm(0, 3); }
@ -376,9 +391,10 @@ private:
OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
bool parseAddress(unsigned &Base, const MCExpr *&Disp,
unsigned &Index, bool &IsVector, const MCExpr *&Length,
const unsigned *Regs, RegisterKind RegKind);
bool parseAddress(bool &HaveReg1, Register &Reg1,
bool &HaveReg2, Register &Reg2,
const MCExpr *&Disp, const MCExpr *&Length);
bool parseAddressRegister(Register &Reg);
bool ParseDirectiveInsn(SMLoc L);
@ -476,6 +492,9 @@ public:
OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg);
}
OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg);
}
OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg);
}
@ -712,58 +731,39 @@ SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
return MatchOperand_Success;
}
// Parse a memory operand into Base, Disp, Index and Length.
// Regs maps asm register numbers to LLVM register numbers and RegKind
// says what kind of address register we're using (ADDR32Reg or ADDR64Reg).
bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
unsigned &Index, bool &IsVector,
const MCExpr *&Length, const unsigned *Regs,
RegisterKind RegKind) {
// Parse a memory operand into Reg1, Reg2, Disp, and Length.
bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
bool &HaveReg2, Register &Reg2,
const MCExpr *&Disp,
const MCExpr *&Length) {
// Parse the displacement, which must always be present.
if (getParser().parseExpression(Disp))
return true;
// Parse the optional base and index.
Index = 0;
Base = 0;
IsVector = false;
HaveReg1 = false;
HaveReg2 = false;
Length = nullptr;
if (getLexer().is(AsmToken::LParen)) {
Parser.Lex();
if (getLexer().is(AsmToken::Percent)) {
// Parse the first register and decide whether it's a base or an index.
Register Reg;
if (parseRegister(Reg))
// Parse the first register.
HaveReg1 = true;
if (parseRegister(Reg1))
return true;
if (Reg.Group == RegV) {
// A vector index register. The base register is optional.
IsVector = true;
Index = SystemZMC::VR128Regs[Reg.Num];
} else if (Reg.Group == RegGR) {
if (Reg.Num == 0)
return Error(Reg.StartLoc, "%r0 used in an address");
// If the are two registers, the first one is the index and the
// second is the base.
if (getLexer().is(AsmToken::Comma))
Index = Regs[Reg.Num];
else
Base = Regs[Reg.Num];
} else
return Error(Reg.StartLoc, "invalid address register");
} else {
// Parse the length.
if (getParser().parseExpression(Length))
return true;
}
// Check whether there's a second register. It's the base if so.
// Check whether there's a second register.
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
Register Reg;
if (parseRegister(Reg, RegGR, Regs, RegKind))
HaveReg2 = true;
if (parseRegister(Reg2))
return true;
Base = Reg.Num;
}
// Consume the closing bracket.
@ -774,49 +774,141 @@ bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
return false;
}
// Verify that Reg is a valid address register (base or index).
bool
SystemZAsmParser::parseAddressRegister(Register &Reg) {
if (Reg.Group == RegV) {
Error(Reg.StartLoc, "invalid use of vector addressing");
return true;
} else if (Reg.Group != RegGR) {
Error(Reg.StartLoc, "invalid address register");
return true;
} else if (Reg.Num == 0) {
Error(Reg.StartLoc, "%r0 used in an address");
return true;
}
return false;
}
// Parse a memory operand and add it to Operands. The other arguments
// are as above.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
const unsigned *Regs, RegisterKind RegKind) {
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned Base, Index;
bool IsVector;
unsigned Base = 0, Index = 0, LengthReg = 0;
Register Reg1, Reg2;
bool HaveReg1, HaveReg2;
const MCExpr *Disp;
const MCExpr *Length;
if (parseAddress(Base, Disp, Index, IsVector, Length, Regs, RegKind))
if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length))
return MatchOperand_ParseFail;
if (IsVector && MemKind != BDVMem) {
Error(StartLoc, "invalid use of vector addressing");
return MatchOperand_ParseFail;
}
if (!IsVector && MemKind == BDVMem) {
Error(StartLoc, "vector index required in address");
return MatchOperand_ParseFail;
}
if (Index && MemKind != BDXMem && MemKind != BDVMem) {
Error(StartLoc, "invalid use of indexed addressing");
return MatchOperand_ParseFail;
}
if (Length && MemKind != BDLMem) {
Error(StartLoc, "invalid use of length addressing");
return MatchOperand_ParseFail;
}
if (!Length && MemKind == BDLMem) {
Error(StartLoc, "missing length in address");
return MatchOperand_ParseFail;
switch (MemKind) {
case BDMem:
// If we have Reg1, it must be an address register.
if (HaveReg1) {
if (parseAddressRegister(Reg1))
return MatchOperand_ParseFail;
Base = Regs[Reg1.Num];
}
// There must be no Reg2 or length.
if (Length) {
Error(StartLoc, "invalid use of length addressing");
return MatchOperand_ParseFail;
}
if (HaveReg2) {
Error(StartLoc, "invalid use of indexed addressing");
return MatchOperand_ParseFail;
}
break;
case BDXMem:
// If we have Reg1, it must be an address register.
if (HaveReg1) {
if (parseAddressRegister(Reg1))
return MatchOperand_ParseFail;
// If the are two registers, the first one is the index and the
// second is the base.
if (HaveReg2)
Index = Regs[Reg1.Num];
else
Base = Regs[Reg1.Num];
}
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
Base = Regs[Reg2.Num];
}
// There must be no length.
if (Length) {
Error(StartLoc, "invalid use of length addressing");
return MatchOperand_ParseFail;
}
break;
case BDLMem:
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
Base = Regs[Reg2.Num];
}
// We cannot support base+index addressing.
if (HaveReg1 && HaveReg2) {
Error(StartLoc, "invalid use of indexed addressing");
return MatchOperand_ParseFail;
}
// We must have a length.
if (!Length) {
Error(StartLoc, "missing length in address");
return MatchOperand_ParseFail;
}
break;
case BDRMem:
// We must have Reg1, and it must be a GPR.
if (!HaveReg1 || Reg1.Group != RegGR) {
Error(StartLoc, "invalid operand for instruction");
return MatchOperand_ParseFail;
}
LengthReg = SystemZMC::GR64Regs[Reg1.Num];
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
Base = Regs[Reg2.Num];
}
// There must be no length.
if (Length) {
Error(StartLoc, "invalid use of length addressing");
return MatchOperand_ParseFail;
}
break;
case BDVMem:
// We must have Reg1, and it must be a vector register.
if (!HaveReg1 || Reg1.Group != RegV) {
Error(StartLoc, "vector index required in address");
return MatchOperand_ParseFail;
}
Index = SystemZMC::VR128Regs[Reg1.Num];
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
Base = Regs[Reg2.Num];
}
// There must be no length.
if (Length) {
Error(StartLoc, "invalid use of length addressing");
return MatchOperand_ParseFail;
}
break;
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
Index, Length, StartLoc,
EndLoc));
Index, Length, LengthReg,
StartLoc, EndLoc));
return MatchOperand_Success;
}
@ -1010,16 +1102,23 @@ bool SystemZAsmParser::parseOperand(OperandVector &Operands,
// real address operands should have used a context-dependent parse routine,
// so we treat any plain expression as an immediate.
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned Base, Index;
bool IsVector;
const MCExpr *Expr, *Length;
if (parseAddress(Base, Expr, Index, IsVector, Length, SystemZMC::GR64Regs,
ADDR64Reg))
return true;
Register Reg1, Reg2;
bool HaveReg1, HaveReg2;
const MCExpr *Expr;
const MCExpr *Length;
if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length))
return MatchOperand_ParseFail;
// If the register combination is not valid for any instruction, reject it.
// Otherwise, fall back to reporting an unrecognized instruction.
if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
&& parseAddressRegister(Reg1))
return MatchOperand_ParseFail;
if (HaveReg2 && parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
if (Base || Index || Length)
if (HaveReg1 || HaveReg2 || Length)
Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));

View File

@ -321,6 +321,18 @@ static DecodeStatus decodeBDLAddr12Len8Operand(MCInst &Inst, uint64_t Field,
return MCDisassembler::Success;
}
static DecodeStatus decodeBDRAddr12Operand(MCInst &Inst, uint64_t Field,
const unsigned *Regs) {
uint64_t Length = Field >> 16;
uint64_t Base = (Field >> 12) & 0xf;
uint64_t Disp = Field & 0xfff;
assert(Length < 16 && "Invalid BDRAddr12");
Inst.addOperand(MCOperand::createReg(Base == 0 ? 0 : Regs[Base]));
Inst.addOperand(MCOperand::createImm(Disp));
Inst.addOperand(MCOperand::createReg(Regs[Length]));
return MCDisassembler::Success;
}
static DecodeStatus decodeBDVAddr12Operand(MCInst &Inst, uint64_t Field,
const unsigned *Regs) {
uint64_t Index = Field >> 16;
@ -376,6 +388,13 @@ static DecodeStatus decodeBDLAddr64Disp12Len8Operand(MCInst &Inst,
return decodeBDLAddr12Len8Operand(Inst, Field, SystemZMC::GR64Regs);
}
static DecodeStatus decodeBDRAddr64Disp12Operand(MCInst &Inst,
uint64_t Field,
uint64_t Address,
const void *Decoder) {
return decodeBDRAddr12Operand(Inst, Field, SystemZMC::GR64Regs);
}
static DecodeStatus decodeBDVAddr64Disp12Operand(MCInst &Inst, uint64_t Field,
uint64_t Address,
const void *Decoder) {

View File

@ -208,6 +208,17 @@ void SystemZInstPrinter::printBDLAddrOperand(const MCInst *MI, int OpNum,
O << ')';
}
void SystemZInstPrinter::printBDRAddrOperand(const MCInst *MI, int OpNum,
raw_ostream &O) {
unsigned Base = MI->getOperand(OpNum).getReg();
uint64_t Disp = MI->getOperand(OpNum + 1).getImm();
unsigned Length = MI->getOperand(OpNum + 2).getReg();
O << Disp << "(%" << getRegisterName(Length);
if (Base)
O << ",%" << getRegisterName(Base);
O << ')';
}
void SystemZInstPrinter::printBDVAddrOperand(const MCInst *MI, int OpNum,
raw_ostream &O) {
printAddress(MI->getOperand(OpNum).getReg(),

View File

@ -48,6 +48,7 @@ private:
void printBDAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printBDXAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printBDLAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printBDRAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printBDVAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printU1ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
void printU2ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);

View File

@ -72,6 +72,9 @@ private:
uint64_t getBDLAddr12Len8Encoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint64_t getBDRAddr12Encoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint64_t getBDVAddr12Encoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
@ -198,6 +201,17 @@ getBDLAddr12Len8Encoding(const MCInst &MI, unsigned OpNum,
return (Len << 16) | (Base << 12) | Disp;
}
uint64_t SystemZMCCodeEmitter::
getBDRAddr12Encoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
uint64_t Base = getMachineOpValue(MI, MI.getOperand(OpNum), Fixups, STI);
uint64_t Disp = getMachineOpValue(MI, MI.getOperand(OpNum + 1), Fixups, STI);
uint64_t Len = getMachineOpValue(MI, MI.getOperand(OpNum + 2), Fixups, STI);
assert(isUInt<4>(Base) && isUInt<12>(Disp) && isUInt<4>(Len));
return (Len << 16) | (Base << 12) | Disp;
}
uint64_t SystemZMCCodeEmitter::
getBDVAddr12Encoding(const MCInst &MI, unsigned OpNum,
SmallVectorImpl<MCFixup> &Fixups,

View File

@ -588,14 +588,14 @@ class InstSSd<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<20> XBD1;
bits<20> RBD1;
bits<16> BD2;
bits<4> R3;
let Inst{47-40} = op;
let Inst{39-36} = XBD1{19-16};
let Inst{39-36} = RBD1{19-16};
let Inst{35-32} = R3;
let Inst{31-16} = XBD1{15-0};
let Inst{31-16} = RBD1{15-0};
let Inst{15-0} = BD2;
}

View File

@ -1692,9 +1692,9 @@ let Defs = [CC] in {
let mayLoad = 1, mayStore = 1 in
def MVCK : InstSSd<0xD9, (outs),
(ins bdxaddr12only:$XBD1, bdaddr12only:$BD2,
(ins bdraddr12only:$RBD1, bdaddr12only:$BD2,
GR64:$R3),
"mvck\t$XBD1, $BD2, $R3", []>;
"mvck\t$RBD1, $BD2, $R3", []>;
}
let mayStore = 1 in
@ -1789,9 +1789,9 @@ let isCodeGenOnly = 1 in {
imm32zx16:$I2),
".insn sil,$enc,$BD1,$I2", []>;
def InsnSS : DirectiveInsnSS<(outs),
(ins imm64zx48:$enc, bdxaddr12only:$XBD1,
(ins imm64zx48:$enc, bdraddr12only:$RBD1,
bdaddr12only:$BD2, AnyReg:$R3),
".insn ss,$enc,$XBD1,$BD2,$R3", []>;
".insn ss,$enc,$RBD1,$BD2,$R3", []>;
def InsnSSE : DirectiveInsnSSE<(outs),
(ins imm64zx48:$enc,
bdaddr12only:$BD1,bdaddr12only:$BD2),

View File

@ -133,6 +133,13 @@ class BDLMode<string type, string bitsize, string dispsize, string suffix,
!cast<Immediate>("disp"##dispsize##"imm"##bitsize),
!cast<Immediate>("imm"##bitsize))>;
// A BDMode paired with a register length operand.
class BDRMode<string type, string bitsize, string dispsize, string suffix>
: AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
(ops !cast<RegisterOperand>("ADDR"##bitsize),
!cast<Immediate>("disp"##dispsize##"imm"##bitsize),
!cast<RegisterOperand>("GR"##bitsize))>;
// An addressing mode with a base, displacement and a vector index.
class BDVMode<string bitsize, string dispsize>
: AddressOperand<bitsize, dispsize, "", "BDVAddr",
@ -509,6 +516,7 @@ def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">;
def BDRAddr64Disp12 : AddressAsmOperand<"BDRAddr", "64", "12">;
def BDVAddr64Disp12 : AddressAsmOperand<"BDVAddr", "64", "12">;
// DAG patterns and operands for addressing modes. Each mode has
@ -555,6 +563,7 @@ def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">;
def bdraddr12only : BDRMode<"BDRAddr", "64", "12", "Only">;
def bdvaddr12only : BDVMode< "64", "12">;
//===----------------------------------------------------------------------===//

View File

@ -6523,22 +6523,22 @@
# CHECK: mvc 0(256,%r15), 0
0xd2 0xff 0xf0 0x00 0x00 0x00
# CHECK: mvck 0, 0, %r0
# CHECK: mvck 0(%r0), 0, %r0
0xd9 0x00 0x00 0x00 0x00 0x00
# CHECK: mvck 0, 4095, %r2
# CHECK: mvck 0(%r0), 4095, %r2
0xd9 0x02 0x00 0x00 0x0f 0xff
# CHECK: mvck 0, 0(%r1), %r2
# CHECK: mvck 0(%r0), 0(%r1), %r2
0xd9 0x02 0x00 0x00 0x10 0x00
# CHECK: mvck 0, 0(%r15), %r2
# CHECK: mvck 0(%r0), 0(%r15), %r2
0xd9 0x02 0x00 0x00 0xf0 0x00
# CHECK: mvck 0(%r1), 4095(%r15), %r2
# CHECK: mvck 0(%r0,%r1), 4095(%r15), %r2
0xd9 0x02 0x10 0x00 0xff 0xff
# CHECK: mvck 0(%r1), 0(%r15), %r2
# CHECK: mvck 0(%r0,%r1), 0(%r15), %r2
0xd9 0x02 0x10 0x00 0xf0 0x00
# CHECK: mvck 4095(%r15,%r1), 0(%r15), %r2

View File

@ -2418,8 +2418,6 @@
#CHECK: error: invalid use of length addressing
#CHECK: mvck 0(%r1,%r1), 0(2,%r1), %r3
#CHECK: error: %r0 used in an address
#CHECK: mvck 0(%r0,%r1), 0(%r1), %r3
#CHECK: error: invalid operand
#CHECK: mvck -1(%r1,%r1), 0(%r1), %r3
#CHECK: error: invalid operand
@ -2438,7 +2436,6 @@
#CHECK: mvck 0(-), 0, %r3
mvck 0(%r1,%r1), 0(2,%r1), %r3
mvck 0(%r0,%r1), 0(%r1), %r3
mvck -1(%r1,%r1), 0(%r1), %r3
mvck 4096(%r1,%r1), 0(%r1), %r3
mvck 0(%r1,%r1), -1(%r1), %r3

View File

@ -7752,12 +7752,13 @@
mvc 0(256,%r1), 0
mvc 0(256,%r15), 0
#CHECK: mvck 0(%r1), 0, %r3 # encoding: [0xd9,0x03,0x10,0x00,0x00,0x00]
#CHECK: mvck 0(%r1), 0(%r1), %r3 # encoding: [0xd9,0x03,0x10,0x00,0x10,0x00]
#CHECK: mvck 0(%r1), 0(%r15), %r3 # encoding: [0xd9,0x03,0x10,0x00,0xf0,0x00]
#CHECK: mvck 0(%r1), 4095, %r3 # encoding: [0xd9,0x03,0x10,0x00,0x0f,0xff]
#CHECK: mvck 0(%r1), 4095(%r1), %r3 # encoding: [0xd9,0x03,0x10,0x00,0x1f,0xff]
#CHECK: mvck 0(%r1), 4095(%r15), %r3 # encoding: [0xd9,0x03,0x10,0x00,0xff,0xff]
#CHECK: mvck 0(%r0), 0, %r3 # encoding: [0xd9,0x03,0x00,0x00,0x00,0x00]
#CHECK: mvck 0(%r1), 0, %r3 # encoding: [0xd9,0x13,0x00,0x00,0x00,0x00]
#CHECK: mvck 0(%r1), 0(%r1), %r3 # encoding: [0xd9,0x13,0x00,0x00,0x10,0x00]
#CHECK: mvck 0(%r1), 0(%r15), %r3 # encoding: [0xd9,0x13,0x00,0x00,0xf0,0x00]
#CHECK: mvck 0(%r1), 4095, %r3 # encoding: [0xd9,0x13,0x00,0x00,0x0f,0xff]
#CHECK: mvck 0(%r1), 4095(%r1), %r3 # encoding: [0xd9,0x13,0x00,0x00,0x1f,0xff]
#CHECK: mvck 0(%r1), 4095(%r15), %r3 # encoding: [0xd9,0x13,0x00,0x00,0xff,0xff]
#CHECK: mvck 0(%r2,%r1), 0, %r3 # encoding: [0xd9,0x23,0x10,0x00,0x00,0x00]
#CHECK: mvck 0(%r2,%r15), 0, %r3 # encoding: [0xd9,0x23,0xf0,0x00,0x00,0x00]
#CHECK: mvck 4095(%r2,%r1), 0, %r3 # encoding: [0xd9,0x23,0x1f,0xff,0x00,0x00]
@ -7765,6 +7766,7 @@
#CHECK: mvck 0(%r2,%r1), 0, %r3 # encoding: [0xd9,0x23,0x10,0x00,0x00,0x00]
#CHECK: mvck 0(%r2,%r15), 0, %r3 # encoding: [0xd9,0x23,0xf0,0x00,0x00,0x00]
mvck 0(%r0), 0, %r3
mvck 0(%r1), 0, %r3
mvck 0(%r1), 0(%r1), %r3
mvck 0(%r1), 0(%r15), %r3

View File

@ -15,7 +15,7 @@
#CHECK: foo 100(200,%r1), 300
#CHECK: error: invalid address register
#CHECK: foo 100(%a0), 200
#CHECK: error: %r0 used in an address
#CHECK: error: invalid instruction
#CHECK: foo 100(%r0), 200
#CHECK: error: %r0 used in an address
#CHECK: foo 100(%v1,%r0), 200
@ -23,7 +23,7 @@
#CHECK: foo 100(%v0,%r1), 200
#CHECK: error: invalid instruction
#CHECK: foo 100(%v31), 200
#CHECK: error: invalid operand
#CHECK: error: invalid address register
#CHECK: foo 100(%r1,%a0), 200
#CHECK: error: %r0 used in an address
#CHECK: foo 100(%r1,%r0), 200