Recommit rL305677: [CodeGen] Add generic MacroFusion pass

Use llvm::make_unique to avoid ambiguity with MSVC.

This patch adds a generic MacroFusion pass, that is used on X86 and
AArch64, which both define target-specific shouldScheduleAdjacent
functions. This generic pass should make it easier for other targets to
implement macro fusion and I intend to add macro fusion for ARM shortly.

Differential Revision: https://reviews.llvm.org/D34144


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305690 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Florian Hahn 2017-06-19 12:53:31 +00:00
parent afb808fd9e
commit b34ebdd82b
7 changed files with 245 additions and 253 deletions

View File

@ -0,0 +1,41 @@
//===- MacroFusion.h - Macro Fusion ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains the definition of the DAG scheduling mutation to
/// pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include <functional>
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
namespace llvm {
/// \brief Check if the instr pair, FirstMI and SecondMI, should be fused
/// together. Given SecondMI, when FirstMI is unspecified, then check if
/// SecondMI may be part of a fused pair at all.
typedef std::function<bool(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr &SecondMI)> ShouldSchedulePredTy;
/// \brief Create a DAG scheduling mutation to pair instructions back to back
/// for instructions that benefit according to the target-specific
/// shouldScheduleAdjacent predicate function.
std::unique_ptr<ScheduleDAGMutation>
createMacroFusionDAGMutation(ShouldSchedulePredTy shouldScheduleAdjacent);
/// \brief Create a DAG scheduling mutation to pair branch instructions with one
/// of their predecessors back to back for instructions that benefit according
/// to the target-specific shouldScheduleAdjacent predicate function.
std::unique_ptr<ScheduleDAGMutation>
createBranchMacroFusionDAGMutation(ShouldSchedulePredTy shouldScheduleAdjacent);
} // end namespace llvm

View File

@ -92,6 +92,7 @@ add_llvm_library(LLVMCodeGen
PatchableFunction.cpp
MIRPrinter.cpp
MIRPrintingPass.cpp
MacroFusion.cpp
OptimizePHIs.cpp
ParallelCG.cpp
PeepholeOptimizer.cpp

150
lib/CodeGen/MacroFusion.cpp Normal file
View File

@ -0,0 +1,150 @@
//===- MacroFusion.cpp - Macro Fusion ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains the implementation of the DAG scheduling mutation
/// to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MacroFusion.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#define DEBUG_TYPE "misched"
STATISTIC(NumFused, "Number of instr pairs fused");
using namespace llvm;
static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
cl::desc("Enable scheduling for macro fusion."), cl::init(true));
namespace {
static void fuseInstructionPair(ScheduleDAGMI &DAG, SUnit &FirstSU,
SUnit &SecondSU) {
// Create a single weak edge between the adjacent instrs. The only effect is
// to cause bottom-up scheduling to heavily prioritize the clustered instrs.
DAG.addEdge(&SecondSU, SDep(&FirstSU, SDep::Cluster));
// Adjust the latency between the anchor instr and its
// predecessors.
for (SDep &IDep : SecondSU.Preds)
if (IDep.getSUnit() == &FirstSU)
IDep.setLatency(0);
// Adjust the latency between the dependent instr and its
// predecessors.
for (SDep &IDep : FirstSU.Succs)
if (IDep.getSUnit() == &SecondSU)
IDep.setLatency(0);
DEBUG(dbgs() << DAG.MF.getName() << "(): Macro fuse ";
FirstSU.print(dbgs(), &DAG); dbgs() << " - ";
SecondSU.print(dbgs(), &DAG); dbgs() << " / ";
dbgs() << DAG.TII->getName(FirstSU.getInstr()->getOpcode()) << " - " <<
DAG.TII->getName(SecondSU.getInstr()->getOpcode()) << '\n'; );
if (&SecondSU != &DAG.ExitSU)
// Make instructions dependent on FirstSU also dependent on SecondSU to
// prevent them from being scheduled between FirstSU and and SecondSU.
for (const SDep &SI : FirstSU.Succs) {
if (SI.getSUnit() == &SecondSU)
continue;
DEBUG(dbgs() << " Copy Succ ";
SI.getSUnit()->print(dbgs(), &DAG); dbgs() << '\n';);
DAG.addEdge(SI.getSUnit(), SDep(&SecondSU, SDep::Artificial));
}
++NumFused;
}
/// \brief Post-process the DAG to create cluster edges between instrs that may
/// be fused by the processor into a single operation.
class MacroFusion : public ScheduleDAGMutation {
ShouldSchedulePredTy shouldScheduleAdjacent;
bool FuseBlock;
bool scheduleAdjacentImpl(ScheduleDAGMI &DAG, SUnit &AnchorSU);
public:
MacroFusion(ShouldSchedulePredTy shouldScheduleAdjacent, bool FuseBlock)
: shouldScheduleAdjacent(shouldScheduleAdjacent), FuseBlock(FuseBlock) {}
void apply(ScheduleDAGInstrs *DAGInstrs) override;
};
void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
if (FuseBlock)
// For each of the SUnits in the scheduling block, try to fuse the instr in
// it with one in its predecessors.
for (SUnit &ISU : DAG->SUnits)
scheduleAdjacentImpl(*DAG, ISU);
if (DAG->ExitSU.getInstr())
// Try to fuse the instr in the ExitSU with one in its predecessors.
scheduleAdjacentImpl(*DAG, DAG->ExitSU);
}
/// \brief Implement the fusion of instr pairs in the scheduling DAG,
/// anchored at the instr in AnchorSU..
bool MacroFusion::scheduleAdjacentImpl(ScheduleDAGMI &DAG, SUnit &AnchorSU) {
const MachineInstr &AnchorMI = *AnchorSU.getInstr();
const TargetInstrInfo &TII = *DAG.TII;
const TargetSubtargetInfo &ST = DAG.MF.getSubtarget();
// Check if the anchor instr may be fused.
if (!shouldScheduleAdjacent(TII, ST, nullptr, AnchorMI))
return false;
// Explorer for fusion candidates among the dependencies of the anchor instr.
for (SDep &Dep : AnchorSU.Preds) {
// Ignore dependencies that don't enforce ordering.
if (Dep.getKind() == SDep::Anti || Dep.getKind() == SDep::Output ||
Dep.isWeak())
continue;
SUnit &DepSU = *Dep.getSUnit();
if (DepSU.isBoundaryNode())
continue;
const MachineInstr *DepMI = DepSU.getInstr();
if (!shouldScheduleAdjacent(TII, ST, DepMI, AnchorMI))
continue;
fuseInstructionPair(DAG, DepSU, AnchorSU);
return true;
}
return false;
}
} // end anonymous namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation>
createMacroFusionDAGMutation(ShouldSchedulePredTy shouldScheduleAdjacent) {
if(EnableMacroFusion)
return llvm::make_unique<MacroFusion>(shouldScheduleAdjacent, true);
return nullptr;
}
std::unique_ptr<ScheduleDAGMutation>
createBranchMacroFusionDAGMutation(ShouldSchedulePredTy shouldScheduleAdjacent) {
if(EnableMacroFusion)
return llvm::make_unique<MacroFusion>(shouldScheduleAdjacent, false);
return nullptr;
}
} // end namespace llvm

View File

@ -7,37 +7,27 @@
//
//===----------------------------------------------------------------------===//
//
// \file This file contains the AArch64 implementation of the DAG scheduling mutation
// to pair instructions back to back.
/// \file This file contains the AArch64 implementation of the DAG scheduling
/// mutation to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "AArch64MacroFusion.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/CodeGen/MacroFusion.h"
#include "llvm/Target/TargetInstrInfo.h"
#define DEBUG_TYPE "misched"
STATISTIC(NumFused, "Number of instr pairs fused");
using namespace llvm;
static cl::opt<bool> EnableMacroFusion("aarch64-misched-fusion", cl::Hidden,
cl::desc("Enable scheduling for macro fusion."), cl::init(true));
namespace {
/// \brief Verify that the instr pair, FirstMI and SecondMI, should be fused
/// together. Given an anchor instr, when the other instr is unspecified, then
/// check if the anchor instr may be part of a fused pair at all.
/// \brief Check if the instr pair, FirstMI and SecondMI, should be fused
/// together. Given SecondMI, when FirstMI is unspecified, then check if
/// SecondMI may be part of a fused pair at all.
static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr *SecondMI) {
assert((FirstMI || SecondMI) && "At least one instr must be specified");
const MachineInstr &SecondMI) {
const AArch64InstrInfo &II = static_cast<const AArch64InstrInfo&>(TII);
const AArch64Subtarget &ST = static_cast<const AArch64Subtarget&>(TSI);
@ -45,9 +35,7 @@ static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
unsigned FirstOpcode =
FirstMI ? FirstMI->getOpcode()
: static_cast<unsigned>(AArch64::INSTRUCTION_LIST_END);
unsigned SecondOpcode =
SecondMI ? SecondMI->getOpcode()
: static_cast<unsigned>(AArch64::INSTRUCTION_LIST_END);
unsigned SecondOpcode = SecondMI.getOpcode();
if (ST.hasArithmeticBccFusion())
// Fuse CMN, CMP, TST followed by Bcc.
@ -128,158 +116,49 @@ static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
if (ST.hasFuseAES())
// Fuse AES crypto operations.
switch(FirstOpcode) {
switch(SecondOpcode) {
// AES encode.
case AArch64::AESErr:
return SecondOpcode == AArch64::AESMCrr ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
case AArch64::AESMCrr :
return FirstOpcode == AArch64::AESErr ||
FirstOpcode == AArch64::INSTRUCTION_LIST_END;
// AES decode.
case AArch64::AESDrr:
return SecondOpcode == AArch64::AESIMCrr ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
case AArch64::AESIMCrr:
return FirstOpcode == AArch64::AESDrr ||
FirstOpcode == AArch64::INSTRUCTION_LIST_END;
}
if (ST.hasFuseLiterals())
// Fuse literal generation operations.
switch (FirstOpcode) {
switch (SecondOpcode) {
// PC relative address.
case AArch64::ADRP:
return SecondOpcode == AArch64::ADDXri ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
case AArch64::ADDXri:
return FirstOpcode == AArch64::ADRP ||
FirstOpcode == AArch64::INSTRUCTION_LIST_END;
// 32 bit immediate.
case AArch64::MOVZWi:
return (SecondOpcode == AArch64::MOVKWi &&
SecondMI->getOperand(3).getImm() == 16) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// Lower half of 64 bit immediate.
case AArch64::MOVZXi:
return (SecondOpcode == AArch64::MOVKXi &&
SecondMI->getOperand(3).getImm() == 16) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// Upper half of 64 bit immediate.
case AArch64::MOVKWi:
return (FirstOpcode == AArch64::MOVZWi &&
SecondMI.getOperand(3).getImm() == 16) ||
FirstOpcode == AArch64::INSTRUCTION_LIST_END;
// Lower and upper half of 64 bit immediate.
case AArch64::MOVKXi:
return FirstMI->getOperand(3).getImm() == 32 &&
((SecondOpcode == AArch64::MOVKXi &&
SecondMI->getOperand(3).getImm() == 48) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END);
return FirstOpcode == AArch64::INSTRUCTION_LIST_END ||
(FirstOpcode == AArch64::MOVZXi &&
SecondMI.getOperand(3).getImm() == 16) ||
(FirstMI->getOperand(3).getImm() == 32 &&
FirstOpcode == AArch64::MOVKXi &&
SecondMI.getOperand(3).getImm() == 48);
}
return false;
}
/// \brief Implement the fusion of instr pairs in the scheduling DAG,
/// anchored at the instr in AnchorSU..
static bool scheduleAdjacentImpl(ScheduleDAGMI *DAG, SUnit &AnchorSU) {
const MachineInstr *AnchorMI = AnchorSU.getInstr();
if (!AnchorMI || AnchorMI->isPseudo() || AnchorMI->isTransient())
return false;
// If the anchor instr is the ExitSU, then consider its predecessors;
// otherwise, its successors.
bool Preds = (&AnchorSU == &DAG->ExitSU);
SmallVectorImpl<SDep> &AnchorDeps = Preds ? AnchorSU.Preds : AnchorSU.Succs;
const MachineInstr *FirstMI = Preds ? nullptr : AnchorMI;
const MachineInstr *SecondMI = Preds ? AnchorMI : nullptr;
// Check if the anchor instr may be fused.
if (!shouldScheduleAdjacent(*DAG->TII, DAG->MF.getSubtarget(),
FirstMI, SecondMI))
return false;
// Explorer for fusion candidates among the dependencies of the anchor instr.
for (SDep &Dep : AnchorDeps) {
// Ignore dependencies that don't enforce ordering.
if (Dep.isWeak())
continue;
SUnit &DepSU = *Dep.getSUnit();
// Ignore the ExitSU if the dependents are successors.
if (!Preds && &DepSU == &DAG->ExitSU)
continue;
const MachineInstr *DepMI = DepSU.getInstr();
if (!DepMI || DepMI->isPseudo() || DepMI->isTransient())
continue;
FirstMI = Preds ? DepMI : AnchorMI;
SecondMI = Preds ? AnchorMI : DepMI;
if (!shouldScheduleAdjacent(*DAG->TII, DAG->MF.getSubtarget(),
FirstMI, SecondMI))
continue;
// Create a single weak edge between the adjacent instrs. The only effect is
// to cause bottom-up scheduling to heavily prioritize the clustered instrs.
SUnit &FirstSU = Preds ? DepSU : AnchorSU;
SUnit &SecondSU = Preds ? AnchorSU : DepSU;
DAG->addEdge(&SecondSU, SDep(&FirstSU, SDep::Cluster));
// Adjust the latency between the anchor instr and its
// predecessors/successors.
for (SDep &IDep : AnchorDeps)
if (IDep.getSUnit() == &DepSU)
IDep.setLatency(0);
// Adjust the latency between the dependent instr and its
// successors/predecessors.
for (SDep &IDep : Preds ? DepSU.Succs : DepSU.Preds)
if (IDep.getSUnit() == &AnchorSU)
IDep.setLatency(0);
DEBUG(dbgs() << DAG->MF.getName() << "(): Macro fuse ";
FirstSU.print(dbgs(), DAG); dbgs() << " - ";
SecondSU.print(dbgs(), DAG); dbgs() << " / ";
dbgs() << DAG->TII->getName(FirstMI->getOpcode()) << " - " <<
DAG->TII->getName(SecondMI->getOpcode()) << '\n'; );
if (&SecondSU != &DAG->ExitSU)
// Make instructions dependent on FirstSU also dependent on SecondSU to
// prevent them from being scheduled between FirstSU and and SecondSU.
for (SUnit::const_succ_iterator
SI = FirstSU.Succs.begin(), SE = FirstSU.Succs.end();
SI != SE; ++SI) {
if (!SI->getSUnit() || SI->getSUnit() == &SecondSU)
continue;
DEBUG(dbgs() << " Copy Succ ";
SI->getSUnit()->print(dbgs(), DAG); dbgs() << '\n';);
DAG->addEdge(SI->getSUnit(), SDep(&SecondSU, SDep::Artificial));
}
++NumFused;
return true;
}
return false;
}
/// \brief Post-process the DAG to create cluster edges between instrs that may
/// be fused by the processor into a single operation.
class AArch64MacroFusion : public ScheduleDAGMutation {
public:
AArch64MacroFusion() {}
void apply(ScheduleDAGInstrs *DAGInstrs) override;
};
void AArch64MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
// For each of the SUnits in the scheduling block, try to fuse the instr in it
// with one in its successors.
for (SUnit &ISU : DAG->SUnits)
scheduleAdjacentImpl(DAG, ISU);
// Try to fuse the instr in the ExitSU with one in its predecessors.
scheduleAdjacentImpl(DAG, DAG->ExitSU);
}
} // end namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation> createAArch64MacroFusionDAGMutation () {
return EnableMacroFusion ? make_unique<AArch64MacroFusion>() : nullptr;
return createMacroFusionDAGMutation(shouldScheduleAdjacent);
}
} // end namespace llvm

View File

@ -2,23 +2,18 @@
//
// The LLVM Compiler Infrastructure
//
// \fileThis file is distributed under the University of Illinois Open Source
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 definition of the DAG scheduling mutation
// to pair instructions back to back.
/// \file This file contains the AArch64 definition of the DAG scheduling
/// mutation to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
//===----------------------------------------------------------------------===//
// AArch64MacroFusion - DAG post-processing to encourage fusion of macro ops.
//===----------------------------------------------------------------------===//
namespace llvm {
/// Note that you have to add:

View File

@ -2,39 +2,31 @@
//
// The LLVM Compiler Infrastructure
//
// \file This file is distributed under the University of Illinois Open Source
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the DAG scheduling mutation to
// pair instructions back to back.
/// \file This file contains the X86 implementation of the DAG scheduling
/// mutation to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "X86MacroFusion.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#define DEBUG_TYPE "misched"
STATISTIC(NumFused, "Number of instr pairs fused");
#include "llvm/CodeGen/MacroFusion.h"
using namespace llvm;
static cl::opt<bool> EnableMacroFusion("x86-misched-fusion", cl::Hidden,
cl::desc("Enable scheduling for macro fusion."), cl::init(true));
namespace {
/// \brief Verify that the instruction pair, First and Second,
/// should be scheduled back to back. If either instruction is unspecified,
/// then verify that the other instruction may be part of a pair at all.
static bool shouldScheduleAdjacent(const X86Subtarget &ST,
const MachineInstr *First,
const MachineInstr *Second) {
/// \brief Check if the instr pair, FirstMI and SecondMI, should be fused
/// together. Given SecondMI, when FirstMI is unspecified, then check if
/// SecondMI may be part of a fused pair at all.
static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
const X86Subtarget &ST = static_cast<const X86Subtarget&>(TSI);
// Check if this processor supports macro-fusion. Since this is a minor
// heuristic, we haven't specifically reserved a feature. hasAVX is a decent
// proxy for SandyBridge+.
@ -47,13 +39,10 @@ static bool shouldScheduleAdjacent(const X86Subtarget &ST,
FuseInc
} FuseKind;
assert((First || Second) && "At least one instr must be specified");
unsigned FirstOpcode = First
? First->getOpcode()
unsigned FirstOpcode = FirstMI
? FirstMI->getOpcode()
: static_cast<unsigned>(X86::INSTRUCTION_LIST_END);
unsigned SecondOpcode = Second
? Second->getOpcode()
: static_cast<unsigned>(X86::INSTRUCTION_LIST_END);
unsigned SecondOpcode = SecondMI.getOpcode();
switch (SecondOpcode) {
default:
@ -203,69 +192,11 @@ static bool shouldScheduleAdjacent(const X86Subtarget &ST,
}
}
/// \brief Post-process the DAG to create cluster edges between instructions
/// that may be fused by the processor into a single operation.
class X86MacroFusion : public ScheduleDAGMutation {
public:
X86MacroFusion() {}
void apply(ScheduleDAGInstrs *DAGInstrs) override;
};
void X86MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
const X86Subtarget &ST = DAG->MF.getSubtarget<X86Subtarget>();
// For now, assume targets can only fuse with the branch.
SUnit &ExitSU = DAG->ExitSU;
MachineInstr *Branch = ExitSU.getInstr();
if (!Branch || !shouldScheduleAdjacent(ST, nullptr, Branch))
return;
for (SDep &PredDep : ExitSU.Preds) {
if (PredDep.isWeak())
continue;
SUnit &SU = *PredDep.getSUnit();
MachineInstr &Pred = *SU.getInstr();
if (!shouldScheduleAdjacent(ST, &Pred, Branch))
continue;
// Create a single weak edge from SU to ExitSU. The only effect is to cause
// bottom-up scheduling to heavily prioritize the clustered SU. There is no
// need to copy predecessor edges from ExitSU to SU, since top-down
// scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
// of SU, we could create an artificial edge from the deepest root, but it
// hasn't been needed yet.
bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
(void)Success;
assert(Success && "No DAG nodes should be reachable from ExitSU");
// Adjust latency of data deps between the nodes.
for (SDep &PredDep : ExitSU.Preds)
if (PredDep.getSUnit() == &SU)
PredDep.setLatency(0);
for (SDep &SuccDep : SU.Succs)
if (SuccDep.getSUnit() == &ExitSU)
SuccDep.setLatency(0);
++NumFused;
DEBUG(dbgs() << DAG->MF.getName() << "(): Macro fuse ";
SU.print(dbgs(), DAG);
dbgs() << " - ExitSU"
<< " / " << DAG->TII->getName(Pred.getOpcode()) << " - "
<< DAG->TII->getName(Branch->getOpcode()) << '\n';);
break;
}
}
} // end namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation>
createX86MacroFusionDAGMutation () {
return EnableMacroFusion ? make_unique<X86MacroFusion>() : nullptr;
return createBranchMacroFusionDAGMutation(shouldScheduleAdjacent);
}
} // end namespace llvm

View File

@ -2,23 +2,18 @@
//
// The LLVM Compiler Infrastructure
//
// \file This file is distributed under the University of Illinois Open Source
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 definition of the DAG scheduling mutation to pair
// instructions back to back.
/// \file This file contains the X86 definition of the DAG scheduling mutation
/// to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
//===----------------------------------------------------------------------===//
// X86MacroFusion - DAG post-processing to encourage fusion of macro ops.
//===----------------------------------------------------------------------===//
namespace llvm {
/// Note that you have to add: