Initialize SUnits before DAG building.

Affect on SD scheduling and postRA scheduling:
Printing the DAG will display the nodes in top-down topological order.
This matches the order within the MBB and makes my life much easier in general.

Affect on misched:
We don't need to track virtual register uses at all. This is awesome.
I also intend to rely on the SUnit ID as a topo-sort index. So if A < B then we cannot have an edge B -> A.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151135 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrew Trick 2012-02-22 06:08:11 +00:00
parent 44d23825d6
commit b4566a9999
6 changed files with 115 additions and 76 deletions

View File

@ -231,6 +231,7 @@ namespace llvm {
public:
SUnit *OrigNode; // If not this, the node from which
// this node was cloned.
// (SD scheduling only)
// Preds/Succs - The SUnits before/after us in the graph.
SmallVector<SDep, 4> Preds; // All sunit predecessors.

View File

@ -427,6 +427,8 @@ BreakAntiDependencies(const std::vector<SUnit>& SUnits,
// Keep a map of the MachineInstr*'s back to the SUnit representing them.
// This is used for updating debug information.
//
// FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
// Find the node at the bottom of the critical path.

View File

@ -46,7 +46,7 @@ bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
// Finally, just to provide a stable ordering, use the node number as a
// deciding factor.
return LHSNum < RHSNum;
return RHSNum < LHSNum;
}

View File

@ -149,7 +149,8 @@ protected:
MachineScheduler *Pass;
public:
ScheduleTopDownLive(MachineScheduler *P):
ScheduleDAGInstrs(*P->MF, *P->MLI, *P->MDT, /*IsPostRA=*/false), Pass(P) {}
ScheduleDAGInstrs(*P->MF, *P->MLI, *P->MDT, /*IsPostRA=*/false, P->LIS),
Pass(P) {}
/// ScheduleDAGInstrs callback.
void Schedule();
@ -310,7 +311,8 @@ class DefaultMachineScheduler : public ScheduleDAGInstrs {
MachineScheduler *Pass;
public:
DefaultMachineScheduler(MachineScheduler *P):
ScheduleDAGInstrs(*P->MF, *P->MLI, *P->MDT, /*IsPostRA=*/false), Pass(P) {}
ScheduleDAGInstrs(*P->MF, *P->MLI, *P->MDT, /*IsPostRA=*/false, P->LIS),
Pass(P) {}
/// Schedule - This is called back from ScheduleDAGInstrs::Run() when it's
/// time to do some work.
@ -348,15 +350,14 @@ void DefaultMachineScheduler::Schedule() {
#ifndef NDEBUG
namespace {
// Nodes with a higher number have lower priority. This way we attempt to
// Nodes with a higher number have higher priority. This way we attempt to
// schedule the latest instructions earliest.
//
// TODO: Relies on the property of the BuildSchedGraph that results in SUnits
// being ordered in sequence bottom-up. This will be formalized, probably be
// constructing SUnits in a prepass.
// being ordered in sequence top-down.
struct ShuffleSUnitOrder {
bool operator()(SUnit *A, SUnit *B) const {
return A->NodeNum > B->NodeNum;
return A->NodeNum < B->NodeNum;
}
};

View File

@ -17,6 +17,7 @@
#include "llvm/Operator.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
@ -34,11 +35,14 @@ using namespace llvm;
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
const MachineLoopInfo &mli,
const MachineDominatorTree &mdt,
bool IsPostRAFlag)
bool IsPostRAFlag,
LiveIntervals *lis)
: ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
InstrItins(mf.getTarget().getInstrItineraryData()), IsPostRA(IsPostRAFlag),
UnitLatencies(false), Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
LIS(lis), UnitLatencies(false),
Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
LoopRegs(MLI, MDT), FirstDbgValue(0) {
assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
DbgValues.clear();
assert(!(IsPostRA && MF.getRegInfo().getNumVirtRegs()) &&
"Virtual registers must be removed prior to PostRA scheduling");
@ -357,8 +361,6 @@ void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
const MachineInstr *MI = SU->getInstr();
unsigned Reg = MI->getOperand(OperIdx).getReg();
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
// Add output dependence to the next nearest def of this vreg.
//
// Unless this definition is dead, the output dependence should be
@ -366,60 +368,94 @@ void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
// uses. We're conservative for now until we have a way to guarantee the uses
// are not eliminated sometime during scheduling. The output dependence edge
// is also useful if output latency exceeds def-use latency.
SUnit *DefSU = VRegDefs[Reg];
SUnit *&DefSU = VRegDefs[Reg];
if (DefSU && DefSU != SU && DefSU != &ExitSU) {
unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
DefSU->getInstr());
DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
}
VRegDefs[Reg] = SU;
// Add data dependence to any uses of this vreg before the next nearest def.
//
// TODO: Handle ExitSU properly.
//
// TODO: Data dependence could be handled more efficiently at the use-side.
std::vector<SUnit*> &UseList = VRegUses[Reg];
for (std::vector<SUnit*>::const_iterator UI = UseList.begin(),
UE = UseList.end(); UI != UE; ++UI) {
SUnit *UseSU = *UI;
if (UseSU == SU) continue;
// TODO: Handle "special" address latencies cleanly.
const SDep& dep = SDep(SU, SDep::Data, SU->Latency, Reg);
if (!UnitLatencies) {
// Adjust the dependence latency using operand def/use information, then
// allow the target to perform its own adjustments.
ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
}
UseSU->addPred(dep);
}
UseList.clear();
DefSU = SU;
}
/// addVRegUseDeps - Add register antidependencies from this SUnit to
/// instructions that occur later in the same scheduling region if they
/// write the virtual register referenced at OperIdx.
/// addVRegUseDeps - Add a register data dependency if the instruction that
/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
/// register antidependency from this SUnit to instructions that occur later in
/// the same scheduling region if they write the virtual register.
///
/// TODO: Handle ExitSU "uses" properly.
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
unsigned Reg = SU->getInstr()->getOperand(OperIdx).getReg();
MachineInstr *MI = SU->getInstr();
unsigned Reg = MI->getOperand(OperIdx).getReg();
// Lookup this operand's reaching definition.
assert(LIS && "vreg dependencies requires LiveIntervals");
SlotIndex UseIdx = LIS->getSlotIndexes()->getInstructionIndex(MI);
LiveInterval *LI = &LIS->getInterval(Reg);
VNInfo *VNI = LI->getVNInfoAt(UseIdx);
MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
if (Def) {
SUnit *DefSU = getSUnit(Def);
if (DefSU) {
// The reaching Def lives within this scheduling region.
// Create a data dependence.
//
// TODO: Handle "special" address latencies cleanly.
const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
if (!UnitLatencies) {
// Adjust the dependence latency using operand def/use information, then
// allow the target to perform its own adjustments.
ComputeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
}
SU->addPred(dep);
}
}
// Add antidependence to the following def of the vreg it uses.
SUnit *DefSU = VRegDefs[Reg];
if (DefSU && DefSU != SU)
DefSU->addPred(SDep(SU, SDep::Anti, 0, Reg));
DenseMap<unsigned, SUnit*>::const_iterator I = VRegDefs.find(Reg);
if (I != VRegDefs.end()) {
SUnit *DefSU = I->second;
if (DefSU != SU)
DefSU->addPred(SDep(SU, SDep::Anti, 0, Reg));
}
}
// Add this SUnit to the use list of the vreg it uses.
//
// TODO: pinch the DAG before we see too many uses to avoid quadratic
// behavior. Limiting the scheduling window can accomplish the same thing.
VRegUses[Reg].push_back(SU);
/// Create an SUnit for each real instruction, numbered in top-down toplological
/// order. The instruction order A < B, implies that no edge exists from B to A.
///
/// Map each real instruction to its SUnit.
///
/// After initSUnits, the SUnits vector is cannot be resized and the scheduler
/// may hang onto SUnit pointers. We may relax this in the future by using SUnit
/// IDs instead of pointers.
void ScheduleDAGInstrs::initSUnits() {
// We'll be allocating one SUnit for each real instruction in the region,
// which is contained within a basic block.
SUnits.reserve(BB->size());
for (MachineBasicBlock::iterator I = Begin; I != InsertPos; ++I) {
MachineInstr *MI = I;
if (MI->isDebugValue())
continue;
SUnit *SU = NewSUnit(MI);
MISUnitMap[MI] = SU;
SU->isCall = MI->isCall();
SU->isCommutable = MI->isCommutable();
// Assign the Latency field of SU using target-provided information.
if (UnitLatencies)
SU->Latency = 1;
else
ComputeLatency(SU);
}
}
void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
// We'll be allocating one SUnit for each instruction, plus one for
// the region exit node.
SUnits.reserve(BB->size());
// Create an SUnit for each real instruction.
initSUnits();
// We build scheduling units by walking a block's instruction list from bottom
// to top.
@ -447,14 +483,7 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
}
// Reinitialize the large VReg vectors, while reusing the memory.
//
// Note: this can be an expensive part of DAG building. We may want to be more
// clever. Reevaluate after VRegUses goes away.
assert(VRegDefs.size() == 0 && VRegUses.size() == 0 &&
"Only BuildSchedGraph should access VRegDefs/Uses");
VRegDefs.resize(MF.getRegInfo().getNumVirtRegs());
VRegUses.resize(MF.getRegInfo().getNumVirtRegs());
assert(VRegDefs.size() == 0 && "Only BuildSchedGraph may access VRegDefs");
// Walk the list of instructions, from bottom moving up.
MachineInstr *PrevMI = NULL;
@ -473,16 +502,9 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
assert(!MI->isTerminator() && !MI->isLabel() &&
"Cannot schedule terminators or labels!");
// Create the SUnit for this MI.
SUnit *SU = NewSUnit(MI);
SU->isCall = MI->isCall();
SU->isCommutable = MI->isCommutable();
// Assign the Latency field of SU using target-provided information.
if (UnitLatencies)
SU->Latency = 1;
else
ComputeLatency(SU);
SUnit *SU = MISUnitMap[MI];
assert(SU && "No SUnit mapped to this MI");
// Add register-based dependencies (data, anti, and output).
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
@ -657,8 +679,8 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
Uses[i].clear();
}
VRegDefs.clear();
VRegUses.clear();
PendingLoads.clear();
MISUnitMap.clear();
}
void ScheduleDAGInstrs::FinishBlock() {

View File

@ -27,6 +27,7 @@
namespace llvm {
class MachineLoopInfo;
class MachineDominatorTree;
class LiveIntervals;
/// LoopDependencies - This class analyzes loop-oriented register
/// dependencies, which are used to guide scheduling decisions.
@ -108,6 +109,11 @@ namespace llvm {
/// isPostRA flag indicates vregs cannot be present.
bool IsPostRA;
/// Live Intervals provides reaching defs in preRA scheduling.
LiveIntervals *LIS;
DenseMap<MachineInstr*, SUnit*> MISUnitMap;
/// UnitLatencies (misnamed) flag avoids computing def-use latencies, using
/// the def-side latency only.
bool UnitLatencies;
@ -119,12 +125,9 @@ namespace llvm {
std::vector<std::vector<SUnit *> > Defs;
std::vector<std::vector<SUnit *> > Uses;
// Virtual register Defs and Uses.
//
// TODO: Eliminate VRegUses by creating SUnits in a prepass and looking up
// the live range's reaching def.
IndexedMap<SUnit*, VirtReg2IndexFunctor> VRegDefs;
IndexedMap<std::vector<SUnit*>, VirtReg2IndexFunctor> VRegUses;
// Track the last instructon in this region defining each virtual register.
// FIXME: turn this into a sparse set with constant time clear().
DenseMap<unsigned, SUnit*> VRegDefs;
/// PendingLoads - Remember where unknown loads are after the most recent
/// unknown store, as we iterate. As with Defs and Uses, this is here
@ -152,7 +155,8 @@ namespace llvm {
explicit ScheduleDAGInstrs(MachineFunction &mf,
const MachineLoopInfo &mli,
const MachineDominatorTree &mdt,
bool IsPostRAFlag);
bool IsPostRAFlag,
LiveIntervals *LIS = 0);
virtual ~ScheduleDAGInstrs() {}
@ -169,6 +173,7 @@ namespace llvm {
return &SUnits.back();
}
/// Run - perform scheduling.
///
void Run(MachineBasicBlock *bb,
@ -219,6 +224,14 @@ namespace llvm {
virtual std::string getGraphNodeLabel(const SUnit *SU) const;
protected:
SUnit *getSUnit(MachineInstr *MI) const {
DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
if (I == MISUnitMap.end())
return 0;
return I->second;
}
void initSUnits();
void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
void addVRegUseDeps(SUnit *SU, unsigned OperIdx);