Support for function summary index bitcode sections and files.

Summary:
The bitcode format is described in this document:
  https://drive.google.com/file/d/0B036uwnWM6RWdnBLakxmeDdOeXc/view
For more info on ThinLTO see:
  https://sites.google.com/site/llvmthinlto

The first customer is ThinLTO, however the data structures are designed
and named more generally based on prior feedback. There are a few
comments regarding how certain interfaces are used by ThinLTO, and the
options added here to gold currently have ThinLTO-specific names as the
behavior they provoke is currently ThinLTO-specific.

This patch includes support for generating per-module function indexes,
the combined index file via the gold plugin, and several tests
(more are included with the associated clang patch D11908).

Reviewers: dexonsmith, davidxl, joker.eph

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D13107

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@249270 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Teresa Johnson 2015-10-04 14:33:43 +00:00
parent ea978bb563
commit b97baa5fe5
20 changed files with 1633 additions and 46 deletions

View File

@ -29,8 +29,12 @@ class PreservedAnalyses;
///
/// If \c ShouldPreserveUseListOrder, encode use-list order so it can be
/// reproduced when deserialized.
///
/// If \c EmitFunctionSummary, emit the function summary index (currently
/// for use in ThinLTO optimization).
ModulePass *createBitcodeWriterPass(raw_ostream &Str,
bool ShouldPreserveUseListOrder = false);
bool ShouldPreserveUseListOrder = false,
bool EmitFunctionSummary = false);
/// \brief Pass for writing a module of IR out to a bitcode file.
///
@ -39,15 +43,21 @@ ModulePass *createBitcodeWriterPass(raw_ostream &Str,
class BitcodeWriterPass {
raw_ostream &OS;
bool ShouldPreserveUseListOrder;
bool EmitFunctionSummary;
public:
/// \brief Construct a bitcode writer pass around a particular output stream.
///
/// If \c ShouldPreserveUseListOrder, encode use-list order so it can be
/// reproduced when deserialized.
///
/// If \c EmitFunctionSummary, emit the function summary index (currently
/// for use in ThinLTO optimization).
explicit BitcodeWriterPass(raw_ostream &OS,
bool ShouldPreserveUseListOrder = false)
: OS(OS), ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {}
bool ShouldPreserveUseListOrder = false,
bool EmitFunctionSummary = false)
: OS(OS), ShouldPreserveUseListOrder(ShouldPreserveUseListOrder),
EmitFunctionSummary(EmitFunctionSummary) {}
/// \brief Run the bitcode writer pass, and output the module to the selected
/// output stream.

View File

@ -95,6 +95,9 @@ public:
/// \brief Retrieve the current position in the stream, in bits.
uint64_t GetCurrentBitNo() const { return GetBufferOffset() * 8 + CurBit; }
/// \brief Retrieve the number of bits currently used to encode an abbrev ID.
unsigned GetAbbrevIDWidth() const { return CurCodeSize; }
//===--------------------------------------------------------------------===//
// Basic Primitives for emitting bits to the stream.
//===--------------------------------------------------------------------===//

View File

@ -150,6 +150,20 @@ namespace bitc {
VST_CODE_ENTRY = 1, // VST_ENTRY: [valueid, namechar x N]
VST_CODE_BBENTRY = 2, // VST_BBENTRY: [bbid, namechar x N]
VST_CODE_FNENTRY = 3, // VST_FNENTRY: [valueid, offset, namechar x N]
// VST_COMBINED_FNENTRY: [offset, namechar x N]
VST_CODE_COMBINED_FNENTRY = 4
};
// The module path symbol table only has one code (MST_CODE_ENTRY).
enum ModulePathSymtabCodes {
MST_CODE_ENTRY = 1, // MST_ENTRY: [modid, namechar x N]
};
// The function summary section uses different codes in the per-module
// and combined index cases.
enum FunctionSummarySymtabCodes {
FS_CODE_PERMODULE_ENTRY = 1, // FS_ENTRY: [valueid, islocal, instcount]
FS_CODE_COMBINED_ENTRY = 2, // FS_ENTRY: [modid, instcount]
};
enum MetadataCodes {

View File

@ -15,6 +15,7 @@
#define LLVM_BITCODE_READERWRITER_H
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/FunctionInfo.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
@ -58,6 +59,30 @@ namespace llvm {
parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler = nullptr);
/// Check if the given bitcode buffer contains a function summary block.
bool hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler);
/// Parse the specified bitcode buffer, returning the function info index.
/// If IsLazy is true, parse the entire function summary into
/// the index. Otherwise skip the function summary section, and only create
/// an index object with a map from function name to function summary offset.
/// The index is used to perform lazy function summary reading later.
ErrorOr<std::unique_ptr<FunctionInfoIndex>> getFunctionInfoIndex(
MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false);
/// This method supports lazy reading of function summary data from the
/// combined index during function importing. When reading the combined index
/// file, getFunctionInfoIndex is first invoked with IsLazy=true.
/// Then this method is called for each function considered for importing,
/// to parse the summary information for the given function name into
/// the index.
std::error_code readFunctionSummary(
MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler, StringRef FunctionName,
std::unique_ptr<FunctionInfoIndex> Index);
/// \brief Write the specified module to the specified raw output stream.
///
/// For streams where it matters, the given stream should be in "binary"
@ -66,8 +91,18 @@ namespace llvm {
/// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
/// Value in \c M. These will be reconstructed exactly when \a M is
/// deserialized.
///
/// If \c EmitFunctionSummary, emit the function summary index (currently
/// for use in ThinLTO optimization).
void WriteBitcodeToFile(const Module *M, raw_ostream &Out,
bool ShouldPreserveUseListOrder = false);
bool ShouldPreserveUseListOrder = false,
bool EmitFunctionSummary = false);
/// Write the specified function summary index to the given raw output stream,
/// where it will be written in a new bitcode block. This is used when
/// writing the combined index file for ThinLTO.
void WriteFunctionSummaryToFile(const FunctionInfoIndex *Index,
raw_ostream &Out);
/// isBitcodeWrapper - Return true if the given bytes are the magic bytes
/// for an LLVM IR bitcode wrapper.

View File

@ -0,0 +1,230 @@
//===-- llvm/FunctionInfo.h - Function Info Index ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// FunctionInfo.h This file contains the declarations the classes that hold
/// the function info index and summary.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_FUNCTIONINFO_H
#define LLVM_IR_FUNCTIONINFO_H
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
/// \brief Function summary information to aid decisions and implementation of
/// importing.
///
/// This is a separate class from FunctionInfo to enable lazy reading of this
/// function summary information from the combined index file during imporing.
class FunctionSummary {
private:
/// \brief Path of module containing function IR, used to locate module when
/// importing this function.
///
/// This is only used during parsing of the combined function index, or when
/// parsing the per-module index for creation of the combined function index,
/// not during writing of the per-module index which doesn't contain a
/// module path string table.
StringRef ModulePath;
/// \brief Used to flag functions that have local linkage types and need to
/// have module identifier appended before placing into the combined
/// index, to disambiguate from other functions with the same name.
///
/// This is only used in the per-module function index, as it is consumed
/// while creating the combined index.
bool IsLocalFunction;
// The rest of the information is used to help decide whether importing
// is likely to be profitable.
// Other information will be added as the importing is tuned, such
// as hotness (when profile available), and other function characteristics.
/// Number of instructions (ignoring debug instructions, e.g.) computed
/// during the initial compile step when the function index is first built.
unsigned InstCount;
public:
/// Construct a summary object from summary data expected for all
/// summary records.
FunctionSummary(unsigned NumInsts) : InstCount(NumInsts) {}
/// Set the path to the module containing this function, for use in
/// the combined index.
void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
/// Get the path to the module containing this function.
StringRef modulePath() const { return ModulePath; }
/// Record whether this is a local function in the per-module index.
void setLocalFunction(bool IsLocal) { IsLocalFunction = IsLocal; }
/// Check whether this was a local function, for use in creating
/// the combined index.
bool isLocalFunction() const { return IsLocalFunction; }
/// Get the instruction count recorded for this function.
unsigned instCount() const { return InstCount; }
};
/// \brief Class to hold pointer to function summary and information required
/// for parsing it.
///
/// For the per-module index, this holds the bitcode offset
/// of the corresponding function block. For the combined index,
/// after parsing of the \a ValueSymbolTable, this initially
/// holds the offset of the corresponding function summary bitcode
/// record. After parsing the associated summary information from the summary
/// block the \a FunctionSummary is populated and stored here.
class FunctionInfo {
private:
/// Function summary information used to help make ThinLTO importing
/// decisions.
std::unique_ptr<FunctionSummary> Summary;
/// \brief The bitcode offset corresponding to either the associated
/// function's function body record, or its function summary record,
/// depending on whether this is a per-module or combined index.
///
/// This bitcode offset is written to or read from the associated
/// \a ValueSymbolTable entry for the function.
/// For the per-module index this holds the bitcode offset of the
/// function's body record within bitcode module block in its module,
/// which is used during lazy function parsing or ThinLTO importing.
/// For the combined index this holds the offset of the corresponding
/// function summary record, to enable associating the combined index
/// VST records with the summary records.
uint64_t BitcodeIndex;
public:
/// Constructor used during parsing of VST entries.
FunctionInfo(uint64_t FuncOffset)
: Summary(nullptr), BitcodeIndex(FuncOffset) {}
/// Constructor used for per-module index bitcode writing.
FunctionInfo(uint64_t FuncOffset,
std::unique_ptr<FunctionSummary> FuncSummary)
: Summary(std::move(FuncSummary)), BitcodeIndex(FuncOffset) {}
/// Record the function summary information parsed out of the function
/// summary block during parsing or combined index creation.
void setFunctionSummary(std::unique_ptr<FunctionSummary> FuncSummary) {
Summary = std::move(FuncSummary);
}
/// Get the function summary recorded for this function.
FunctionSummary *functionSummary() const { return Summary.get(); }
/// Get the bitcode index recorded for this function, depending on
/// the index type.
uint64_t bitcodeIndex() const { return BitcodeIndex; }
/// Record the bitcode index for this function, depending on
/// the index type.
void setBitcodeIndex(uint64_t FuncOffset) { BitcodeIndex = FuncOffset; }
};
/// List of function info structures for a particular function name held
/// in the FunctionMap. Requires a vector in the case of multiple
/// COMDAT functions of the same name.
typedef std::vector<std::unique_ptr<FunctionInfo>> FunctionInfoList;
/// Map from function name to corresponding function info structures.
typedef StringMap<FunctionInfoList> FunctionInfoMapTy;
/// Type used for iterating through the function info map.
typedef FunctionInfoMapTy::const_iterator const_funcinfo_iterator;
typedef FunctionInfoMapTy::iterator funcinfo_iterator;
/// String table to hold/own module path strings, which additionally holds the
/// module ID assigned to each module during the plugin step. The StringMap
/// makes a copy of and owns inserted strings.
typedef StringMap<uint64_t> ModulePathStringTableTy;
/// Class to hold module path string table and function map,
/// and encapsulate methods for operating on them.
class FunctionInfoIndex {
private:
/// Map from function name to list of function information instances
/// for functions of that name (may be duplicates in the COMDAT case, e.g.).
FunctionInfoMapTy FunctionMap;
/// Holds strings for combined index, mapping to the corresponding module ID.
ModulePathStringTableTy ModulePathStringTable;
public:
FunctionInfoIndex() = default;
~FunctionInfoIndex() = default;
// Disable the copy constructor and assignment operators, so
// no unexpected copying/moving occurs.
FunctionInfoIndex(const FunctionInfoIndex &) = delete;
void operator=(const FunctionInfoIndex &) = delete;
funcinfo_iterator begin() { return FunctionMap.begin(); }
const_funcinfo_iterator begin() const { return FunctionMap.begin(); }
funcinfo_iterator end() { return FunctionMap.end(); }
const_funcinfo_iterator end() const { return FunctionMap.end(); }
/// Get the list of function info objects for a given function.
const FunctionInfoList &getFunctionInfoList(StringRef FuncName) {
return FunctionMap[FuncName];
}
/// Add a function info for a function of the given name.
void addFunctionInfo(StringRef FuncName, std::unique_ptr<FunctionInfo> Info) {
FunctionMap[FuncName].push_back(std::move(Info));
}
/// Iterator to allow writer to walk through table during emission.
iterator_range<StringMap<uint64_t>::const_iterator> modPathStringEntries()
const {
return llvm::make_range(ModulePathStringTable.begin(),
ModulePathStringTable.end());
}
/// Get the module ID recorded for the given module path.
uint64_t getModuleId(const StringRef ModPath) const {
return ModulePathStringTable.lookup(ModPath);
}
/// Add the given per-module index into this function index/summary,
/// assigning it the given module ID. Each module merged in should have
/// a unique ID, necessary for consistent renaming of promoted
/// static (local) variables.
void mergeFrom(std::unique_ptr<FunctionInfoIndex> Other,
uint64_t NextModuleId);
/// Convenience method for creating a promoted global name
/// for the given value name of a local, and its original module's ID.
static std::string getGlobalNameForLocal(StringRef Name, uint64_t ModId) {
SmallString<256> NewName(Name);
NewName += ".llvm.";
raw_svector_ostream(NewName) << ModId;
return NewName.str();
}
/// Add a new module path, mapped to the given module Id, and return StringRef
/// owned by string table map.
StringRef addModulePath(StringRef ModPath, uint64_t ModId) {
return ModulePathStringTable.insert(std::make_pair(ModPath, ModId))
.first->first();
}
};
} // End llvm namespace
#endif

View File

@ -43,6 +43,7 @@ protected:
ID_MachOUniversalBinary,
ID_COFFImportFile,
ID_IR, // LLVM IR
ID_FunctionIndex, // Function summary index
// Object and children.
ID_StartObjects,
@ -122,6 +123,10 @@ public:
return TypeID == ID_IR;
}
bool isFunctionIndex() const {
return TypeID == ID_FunctionIndex;
}
bool isLittleEndian() const {
return !(TypeID == ID_ELF32B || TypeID == ID_ELF64B ||
TypeID == ID_MachO32B || TypeID == ID_MachO64B);

View File

@ -0,0 +1,99 @@
//===- FunctionIndexObjectFile.h - Function index file implementation -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the FunctionIndexObjectFile template class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_FUNCTIONINDEXOBJECTFILE_H
#define LLVM_OBJECT_FUNCTIONINDEXOBJECTFILE_H
#include "llvm/Object/SymbolicFile.h"
namespace llvm {
class FunctionInfoIndex;
namespace object {
class ObjectFile;
/// This class is used to read just the function summary index related
/// sections out of the given object (which may contain a single module's
/// bitcode or be a combined index bitcode file). It builds a FunctionInfoIndex
/// object.
class FunctionIndexObjectFile : public SymbolicFile {
std::unique_ptr<FunctionInfoIndex> Index;
public:
FunctionIndexObjectFile(MemoryBufferRef Object,
std::unique_ptr<FunctionInfoIndex> I);
~FunctionIndexObjectFile() override;
// TODO: Walk through FunctionMap entries for function symbols.
// However, currently these interfaces are not used by any consumers.
void moveSymbolNext(DataRefImpl &Symb) const override {
llvm_unreachable("not implemented");
}
std::error_code printSymbolName(raw_ostream &OS,
DataRefImpl Symb) const override {
llvm_unreachable("not implemented");
return std::error_code();
}
uint32_t getSymbolFlags(DataRefImpl Symb) const override {
llvm_unreachable("not implemented");
return 0;
}
basic_symbol_iterator symbol_begin_impl() const override {
llvm_unreachable("not implemented");
return basic_symbol_iterator(BasicSymbolRef());
}
basic_symbol_iterator symbol_end_impl() const override {
llvm_unreachable("not implemented");
return basic_symbol_iterator(BasicSymbolRef());
}
const FunctionInfoIndex &getIndex() const {
return const_cast<FunctionIndexObjectFile *>(this)->getIndex();
}
FunctionInfoIndex &getIndex() { return *Index; }
std::unique_ptr<FunctionInfoIndex> takeIndex();
static inline bool classof(const Binary *v) { return v->isFunctionIndex(); }
/// \brief Finds and returns bitcode embedded in the given object file, or an
/// error code if not found.
static ErrorOr<MemoryBufferRef> findBitcodeInObject(const ObjectFile &Obj);
/// \brief Finds and returns bitcode in the given memory buffer (which may
/// be either a bitcode file or a native object file with embedded bitcode),
/// or an error code if not found.
static ErrorOr<MemoryBufferRef> findBitcodeInMemBuffer(
MemoryBufferRef Object);
/// \brief Looks for function summary in the given memory buffer,
/// returns true if found, else false.
static bool hasFunctionSummaryInMemBuffer(MemoryBufferRef Object,
LLVMContext &Context);
/// \brief Parse function index in the given memory buffer.
/// Return new FunctionIndexObjectFile instance containing parsed function
/// summary/index.
static ErrorOr<std::unique_ptr<FunctionIndexObjectFile>> create(
MemoryBufferRef Object, LLVMContext &Context, bool IsLazy = false);
/// \brief Parse the function summary information for function with the
/// given name out of the given buffer. Parsed information is
/// stored on the index object saved in this object.
std::error_code findFunctionSummaryInMemBuffer(MemoryBufferRef Object,
LLVMContext &Context,
StringRef FunctionName);
};
}
}
#endif

View File

@ -27,6 +27,7 @@
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/FunctionInfo.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/DataStream.h"
#include "llvm/Support/ManagedStatic.h"
@ -395,6 +396,96 @@ private:
Function *F,
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
};
/// Class to manage reading and parsing function summary index bitcode
/// files/sections.
class FunctionIndexBitcodeReader {
LLVMContext &Context;
DiagnosticHandlerFunction DiagnosticHandler;
/// Eventually points to the function index built during parsing.
FunctionInfoIndex *TheIndex = nullptr;
std::unique_ptr<MemoryBuffer> Buffer;
std::unique_ptr<BitstreamReader> StreamFile;
BitstreamCursor Stream;
/// \brief Used to indicate whether we are doing lazy parsing of summary data.
///
/// If false, the summary section is fully parsed into the index during
/// the initial parse. Otherwise, if true, the caller is expected to
/// invoke \a readFunctionSummary for each summary needed, and the summary
/// section is thus parsed lazily.
bool IsLazy = false;
/// Used to indicate whether caller only wants to check for the presence
/// of the function summary bitcode section. All blocks are skipped,
/// but the SeenFuncSummary boolean is set.
bool CheckFuncSummaryPresenceOnly = false;
/// Indicates whether we have encountered a function summary section
/// yet during parsing, used when checking if file contains function
/// summary section.
bool SeenFuncSummary = false;
/// \brief Map populated during function summary section parsing, and
/// consumed during ValueSymbolTable parsing.
///
/// Used to correlate summary records with VST entries. For the per-module
/// index this maps the ValueID to the parsed function summary, and
/// for the combined index this maps the summary record's bitcode
/// offset to the function summary (since in the combined index the
/// VST records do not hold value IDs but rather hold the function
/// summary record offset).
DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap;
/// Map populated during module path string table parsing, from the
/// module ID to a string reference owned by the index's module
/// path string table, used to correlate with combined index function
/// summary records.
DenseMap<uint64_t, StringRef> ModuleIdMap;
public:
std::error_code error(BitcodeError E, const Twine &Message);
std::error_code error(BitcodeError E);
std::error_code error(const Twine &Message);
FunctionIndexBitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler,
bool IsLazy = false,
bool CheckFuncSummaryPresenceOnly = false);
FunctionIndexBitcodeReader(LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler,
bool IsLazy = false,
bool CheckFuncSummaryPresenceOnly = false);
~FunctionIndexBitcodeReader() { freeState(); }
void freeState();
void releaseBuffer();
/// Check if the parser has encountered a function summary section.
bool foundFuncSummary() { return SeenFuncSummary; }
/// \brief Main interface to parsing a bitcode buffer.
/// \returns true if an error occurred.
std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
FunctionInfoIndex *I);
/// \brief Interface for parsing a function summary lazily.
std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,
FunctionInfoIndex *I,
size_t FunctionSummaryOffset);
private:
std::error_code parseModule();
std::error_code parseValueSymbolTable();
std::error_code parseEntireSummary();
std::error_code parseModuleStringTable();
std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
std::error_code initStreamFromBuffer();
std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
};
} // namespace
BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
@ -3377,6 +3468,19 @@ std::error_code BitcodeReader::parseModule(bool Resume,
}
}
/// Helper to read the header common to all bitcode files.
static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return false;
return true;
}
std::error_code
BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
Module *M, bool ShouldLazyLoadMetadata) {
@ -3386,13 +3490,7 @@ BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
return EC;
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return error("Invalid bitcode signature");
if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
@ -3459,13 +3557,7 @@ ErrorOr<std::string> BitcodeReader::parseTriple() {
return EC;
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return error("Invalid bitcode signature");
if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
@ -5060,6 +5152,405 @@ BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
return std::error_code();
}
std::error_code FunctionIndexBitcodeReader::error(BitcodeError E,
const Twine &Message) {
return ::error(DiagnosticHandler, make_error_code(E), Message);
}
std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) {
return ::error(DiagnosticHandler,
make_error_code(BitcodeError::CorruptedBitcode), Message);
}
std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) {
return ::error(DiagnosticHandler, make_error_code(E));
}
FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
MemoryBuffer *Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
bool CheckFuncSummaryPresenceOnly)
: Context(Context),
DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)),
Buffer(Buffer),
IsLazy(IsLazy),
CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler,
bool IsLazy, bool CheckFuncSummaryPresenceOnly)
: Context(Context),
DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)),
Buffer(nullptr),
IsLazy(IsLazy),
CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; }
void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
// Specialized value symbol table parser used when reading function index
// blocks where we don't actually create global values.
// At the end of this routine the function index is populated with a map
// from function name to FunctionInfo. The function info contains
// the function block's bitcode offset as well as the offset into the
// function summary section.
std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() {
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return error("Invalid record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
SmallString<128> ValueName;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
break;
case bitc::VST_CODE_FNENTRY: {
// VST_FNENTRY: [valueid, offset, namechar x N]
if (convertToString(Record, 2, ValueName))
return error("Invalid record");
unsigned ValueID = Record[0];
uint64_t FuncOffset = Record[1];
std::unique_ptr<FunctionInfo> FuncInfo =
llvm::make_unique<FunctionInfo>(FuncOffset);
if (foundFuncSummary() && !IsLazy) {
DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
SummaryMap.find(ValueID);
assert(SMI != SummaryMap.end() && "Summary info not found");
FuncInfo->setFunctionSummary(std::move(SMI->second));
}
TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
ValueName.clear();
break;
}
case bitc::VST_CODE_COMBINED_FNENTRY: {
// VST_FNENTRY: [offset, namechar x N]
if (convertToString(Record, 1, ValueName))
return error("Invalid record");
uint64_t FuncSummaryOffset = Record[0];
std::unique_ptr<FunctionInfo> FuncInfo =
llvm::make_unique<FunctionInfo>(FuncSummaryOffset);
if (foundFuncSummary() && !IsLazy) {
DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
SummaryMap.find(FuncSummaryOffset);
assert(SMI != SummaryMap.end() && "Summary info not found");
FuncInfo->setFunctionSummary(std::move(SMI->second));
}
TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
ValueName.clear();
break;
}
}
}
}
// Parse just the blocks needed for function index building out of the module.
// At the end of this routine the function Index is populated with a map
// from function name to FunctionInfo. The function info contains
// either the parsed function summary information (when parsing summaries
// eagerly), or just to the function summary record's offset
// if parsing lazily (IsLazy).
std::error_code FunctionIndexBitcodeReader::parseModule() {
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return error("Invalid record");
// Read the function index for this module.
while (1) {
BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::SubBlock:
if (CheckFuncSummaryPresenceOnly) {
if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID)
SeenFuncSummary = true;
if (Stream.SkipBlock()) return error("Invalid record");
// No need to parse the rest since we found the summary.
return std::error_code();
}
switch (Entry.ID) {
default: // Skip unknown content.
if (Stream.SkipBlock()) return error("Invalid record");
break;
case bitc::BLOCKINFO_BLOCK_ID:
// Need to parse these to get abbrev ids (e.g. for VST)
if (Stream.ReadBlockInfoBlock()) return error("Malformed block");
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (std::error_code EC = parseValueSymbolTable()) return EC;
break;
case bitc::FUNCTION_SUMMARY_BLOCK_ID:
SeenFuncSummary = true;
if (IsLazy) {
// Lazy parsing of summary info, skip it.
if (Stream.SkipBlock()) return error("Invalid record");
} else if (std::error_code EC = parseEntireSummary())
return EC;
break;
case bitc::MODULE_STRTAB_BLOCK_ID:
if (std::error_code EC = parseModuleStringTable()) return EC;
break;
}
continue;
case BitstreamEntry::Record:
Stream.skipRecord(Entry.ID);
continue;
}
}
}
// Eagerly parse the entire function summary block (i.e. for all functions
// in the index). This populates the FunctionSummary objects in
// the index.
std::error_code FunctionIndexBitcodeReader::parseEntireSummary() {
if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID))
return error("Invalid record");
SmallVector<uint64_t, 64> Record;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record. The record format depends on whether this
// is a per-module index or a combined index file. In the per-module
// case the records contain the associated value's ID for correlation
// with VST entries. In the combined index the correlation is done
// via the bitcode offset of the summary records (which were saved
// in the combined index VST entries). The records also contain
// information used for ThinLTO renaming and importing.
Record.clear();
uint64_t CurRecordBit = Stream.GetCurrentBitNo();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
// FS_PERMODULE_ENTRY: [valueid, islocal, instcount]
case bitc::FS_CODE_PERMODULE_ENTRY: {
unsigned ValueID = Record[0];
bool IsLocal = Record[1];
unsigned InstCount = Record[2];
std::unique_ptr<FunctionSummary> FS =
llvm::make_unique<FunctionSummary>(InstCount);
FS->setLocalFunction(IsLocal);
// The module path string ref set in the summary must be owned by the
// index's module string table. Since we don't have a module path
// string table section in the per-module index, we create a single
// module path string table entry with an empty (0) ID to take
// ownership.
FS->setModulePath(
TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
SummaryMap[ValueID] = std::move(FS);
}
// FS_COMBINED_ENTRY: [modid, instcount]
case bitc::FS_CODE_COMBINED_ENTRY: {
uint64_t ModuleId = Record[0];
unsigned InstCount = Record[1];
std::unique_ptr<FunctionSummary> FS =
llvm::make_unique<FunctionSummary>(InstCount);
FS->setModulePath(ModuleIdMap[ModuleId]);
SummaryMap[CurRecordBit] = std::move(FS);
}
}
}
llvm_unreachable("Exit infinite loop");
}
// Parse the module string table block into the Index.
// This populates the ModulePathStringTable map in the index.
std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() {
if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
return error("Invalid record");
SmallVector<uint64_t, 64> Record;
SmallString<128> ModulePath;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
case bitc::MST_CODE_ENTRY: {
// MST_ENTRY: [modid, namechar x N]
if (convertToString(Record, 1, ModulePath))
return error("Invalid record");
uint64_t ModuleId = Record[0];
StringRef ModulePathInMap =
TheIndex->addModulePath(ModulePath, ModuleId);
ModuleIdMap[ModuleId] = ModulePathInMap;
ModulePath.clear();
break;
}
}
}
llvm_unreachable("Exit infinite loop");
}
// Parse the function info index from the bitcode streamer into the given index.
std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto(
std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) {
TheIndex = I;
if (std::error_code EC = initStream(std::move(Streamer))) return EC;
// Sniff for the signature.
if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (1) {
if (Stream.AtEndOfStream()) {
// We didn't really read a proper Module block.
return error("Malformed block");
}
BitstreamEntry Entry =
Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
if (Entry.Kind != BitstreamEntry::SubBlock) return error("Malformed block");
// If we see a MODULE_BLOCK, parse it to find the blocks needed for
// building the function summary index.
if (Entry.ID == bitc::MODULE_BLOCK_ID) return parseModule();
if (Stream.SkipBlock()) return error("Invalid record");
}
}
// Parse the function information at the given offset in the buffer into
// the index. Used to support lazy parsing of function summaries from the
// combined index during importing.
// TODO: This function is not yet complete as it won't have a consumer
// until ThinLTO function importing is added.
std::error_code FunctionIndexBitcodeReader::parseFunctionSummary(
std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I,
size_t FunctionSummaryOffset) {
TheIndex = I;
if (std::error_code EC = initStream(std::move(Streamer))) return EC;
// Sniff for the signature.
if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature");
Stream.JumpToBit(FunctionSummaryOffset);
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
default:
return error("Malformed block");
case BitstreamEntry::Record:
// The expected case.
break;
}
// TODO: Read a record. This interface will be completed when ThinLTO
// importing is added so that it can be tested.
SmallVector<uint64_t, 64> Record;
switch (Stream.readRecord(Entry.ID, Record)) {
default:
return error("Invalid record");
}
return std::error_code();
}
std::error_code FunctionIndexBitcodeReader::initStream(
std::unique_ptr<DataStreamer> Streamer) {
if (Streamer) return initLazyStream(std::move(Streamer));
return initStreamFromBuffer();
}
std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() {
const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
if (Buffer->getBufferSize() & 3) return error("Invalid bitcode signature");
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
return error("Invalid bitcode wrapper header");
StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
Stream.init(&*StreamFile);
return std::error_code();
}
std::error_code FunctionIndexBitcodeReader::initLazyStream(
std::unique_ptr<DataStreamer> Streamer) {
// Check and strip off the bitcode wrapper; BitstreamReader expects never to
// see it.
auto OwnedBytes =
llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
StreamingMemoryObject &Bytes = *OwnedBytes;
StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
Stream.init(&*StreamFile);
unsigned char buf[16];
if (Bytes.readBytes(buf, 16, 0) != 16)
return error("Invalid bitcode signature");
if (!isBitcode(buf, buf + 16)) return error("Invalid bitcode signature");
if (isBitcodeWrapper(buf, buf + 4)) {
const unsigned char *bitcodeStart = buf;
const unsigned char *bitcodeEnd = buf + 16;
SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
Bytes.dropLeadingBytes(bitcodeStart - buf);
Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
}
return std::error_code();
}
namespace {
class BitcodeErrorCategoryType : public std::error_category {
const char *name() const LLVM_NOEXCEPT override {
@ -5181,3 +5672,81 @@ llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
return "";
return Triple.get();
}
// Parse the specified bitcode buffer, returning the function info index.
// If IsLazy is false, parse the entire function summary into
// the index. Otherwise skip the function summary section, and only create
// an index object with a map from function name to function summary offset.
// The index is used to perform lazy function summary reading later.
ErrorOr<std::unique_ptr<FunctionInfoIndex>> llvm::getFunctionInfoIndex(
MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy) {
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy);
std::unique_ptr<FunctionInfoIndex> Index =
llvm::make_unique<FunctionInfoIndex>();
auto cleanupOnError = [&](std::error_code EC) {
R.releaseBuffer(); // Never take ownership on error.
return EC;
};
if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
return cleanupOnError(EC);
Buf.release(); // The FunctionIndexBitcodeReader owns it now.
return std::move(Index);
}
// Check if the given bitcode buffer contains a function summary block.
bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler) {
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, false,
true);
auto cleanupOnError = [&](std::error_code EC) {
R.releaseBuffer(); // Never take ownership on error.
return false;
};
if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
return cleanupOnError(EC);
Buf.release(); // The FunctionIndexBitcodeReader owns it now.
return R.foundFuncSummary();
}
// This method supports lazy reading of function summary data from the combined
// index during ThinLTO function importing. When reading the combined index
// file, getFunctionInfoIndex is first invoked with IsLazy=true.
// Then this method is called for each function considered for importing,
// to parse the summary information for the given function name into
// the index.
std::error_code llvm::readFunctionSummary(
MemoryBufferRef Buffer, LLVMContext &Context,
DiagnosticHandlerFunction DiagnosticHandler, StringRef FunctionName,
std::unique_ptr<FunctionInfoIndex> Index) {
std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler);
auto cleanupOnError = [&](std::error_code EC) {
R.releaseBuffer(); // Never take ownership on error.
return EC;
};
// Lookup the given function name in the FunctionMap, which may
// contain a list of function infos in the case of a COMDAT. Walk through
// and parse each function summary info at the function summary offset
// recorded when parsing the value symbol table.
for (const auto &FI : Index->getFunctionInfoList(FunctionName)) {
size_t FunctionSummaryOffset = FI->bitcodeIndex();
if (std::error_code EC =
R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset))
return cleanupOnError(EC);
}
Buf.release(); // The FunctionIndexBitcodeReader owns it now.
return std::error_code();
}

View File

@ -13,6 +13,7 @@
#include "llvm/Bitcode/ReaderWriter.h"
#include "ValueEnumerator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
@ -23,6 +24,7 @@
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/UseListOrder.h"
@ -2187,7 +2189,8 @@ static void WriteValueSymbolTable(
const ValueSymbolTable &VST, const ValueEnumerator &VE,
BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0,
uint64_t BitcodeStartBit = 0,
DenseMap<const Function *, uint64_t> *FunctionIndex = nullptr) {
DenseMap<const Function *, std::unique_ptr<FunctionInfo>> *FunctionIndex =
nullptr) {
if (VST.empty()) {
// WriteValueSymbolTableForwardDecl should have returned early as
// well. Ensure this handling remains in sync by asserting that
@ -2282,7 +2285,8 @@ static void WriteValueSymbolTable(
// Save the word offset of the function (from the start of the
// actual bitcode written to the stream).
assert(FunctionIndex->count(F) == 1);
uint64_t BitcodeIndex = (*FunctionIndex)[F] - BitcodeStartBit;
uint64_t BitcodeIndex =
(*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit;
assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
NameVals.push_back(BitcodeIndex / 32);
@ -2300,9 +2304,7 @@ static void WriteValueSymbolTable(
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
for (const char *P = Name.getKeyData(),
*E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
NameVals.push_back((unsigned char)*P);
for (const auto P : Name.getKey()) NameVals.push_back((unsigned char)P);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
@ -2311,6 +2313,68 @@ static void WriteValueSymbolTable(
Stream.ExitBlock();
}
/// Emit function names and summary offsets for the combined index
/// used by ThinLTO.
static void WriteCombinedValueSymbolTable(const FunctionInfoIndex *Index,
BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
// 8-bit fixed-width VST_COMBINED_FNENTRY function strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
unsigned FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
// 7-bit fixed width VST_COMBINED_FNENTRY function strings.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
unsigned FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
// 6-bit char6 VST_COMBINED_FNENTRY function strings.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
unsigned FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
// FIXME: We know if the type names can use 7-bit ascii.
SmallVector<unsigned, 64> NameVals;
for (const auto &FII : *Index) {
for (const auto &FI : FII.getValue()) {
NameVals.push_back(FI->bitcodeIndex());
StringRef FuncName = FII.first();
// Figure out the encoding to use for the name.
StringEncoding Bits = getStringEncoding(FuncName.data(), FuncName.size());
// VST_COMBINED_FNENTRY: [funcsumoffset, namechar x N]
unsigned AbbrevToUse = FnEntry8BitAbbrev;
if (Bits == SE_Char6)
AbbrevToUse = FnEntry6BitAbbrev;
else if (Bits == SE_Fixed7)
AbbrevToUse = FnEntry7BitAbbrev;
for (const auto P : FuncName) NameVals.push_back((unsigned char)P);
// Emit the finished record.
Stream.EmitRecord(bitc::VST_CODE_COMBINED_FNENTRY, NameVals, AbbrevToUse);
NameVals.clear();
}
}
Stream.ExitBlock();
}
static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
BitstreamWriter &Stream) {
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
@ -2345,14 +2409,33 @@ static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
Stream.ExitBlock();
}
/// WriteFunction - Emit a function body to the module stream.
static void WriteFunction(const Function &F, ValueEnumerator &VE,
BitstreamWriter &Stream,
DenseMap<const Function *, uint64_t> &FunctionIndex) {
/// \brief Save information for the given function into the function index.
///
/// At a minimum this saves the bitcode index of the function record that
/// was just written. However, if we are emitting function summary information,
/// for example for ThinLTO, then a \a FunctionSummary object is created
/// to hold the provided summary information.
static void SaveFunctionInfo(
const Function &F,
DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
unsigned NumInsts, uint64_t BitcodeIndex, bool EmitFunctionSummary) {
std::unique_ptr<FunctionSummary> FuncSummary;
if (EmitFunctionSummary) {
FuncSummary = llvm::make_unique<FunctionSummary>(NumInsts);
FuncSummary->setLocalFunction(F.hasLocalLinkage());
}
FunctionIndex[&F] =
llvm::make_unique<FunctionInfo>(BitcodeIndex, std::move(FuncSummary));
}
/// Emit a function body to the module stream.
static void WriteFunction(
const Function &F, ValueEnumerator &VE, BitstreamWriter &Stream,
DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
bool EmitFunctionSummary) {
// Save the bitcode index of the start of this function block for recording
// in the VST.
uint64_t BitcodeIndex = Stream.GetCurrentBitNo();
FunctionIndex[&F] = BitcodeIndex;
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
VE.incorporateFunction(F);
@ -2379,6 +2462,7 @@ static void WriteFunction(const Function &F, ValueEnumerator &VE,
bool NeedsMetadataAttachment = F.hasMetadata();
DILocation *LastDL = nullptr;
unsigned NumInsts = 0;
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
@ -2386,6 +2470,8 @@ static void WriteFunction(const Function &F, ValueEnumerator &VE,
I != E; ++I) {
WriteInstruction(*I, InstID, VE, Stream, Vals);
if (!isa<DbgInfoIntrinsic>(I)) ++NumInsts;
if (!I->getType()->isVoidTy())
++InstID;
@ -2422,6 +2508,9 @@ static void WriteFunction(const Function &F, ValueEnumerator &VE,
WriteUseListBlock(&F, VE, Stream);
VE.purgeFunction();
Stream.ExitBlock();
SaveFunctionInfo(F, FunctionIndex, NumInsts, BitcodeIndex,
EmitFunctionSummary);
}
// Emit blockinfo, which defines the standard abbreviations etc.
@ -2599,10 +2688,155 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Stream.ExitBlock();
}
/// Write the module path strings, currently only used when generating
/// a combined index file.
static void WriteModStrings(const FunctionInfoIndex *I,
BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
// TODO: See which abbrev sizes we actually need to emit
// 8-bit fixed-width MST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
// 7-bit fixed width MST_ENTRY strings.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
// 6-bit char6 MST_ENTRY strings.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
SmallVector<unsigned, 64> NameVals;
for (const StringMapEntry<uint64_t> &MPSE : I->modPathStringEntries()) {
StringEncoding Bits =
getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
unsigned AbbrevToUse = Abbrev8Bit;
if (Bits == SE_Char6)
AbbrevToUse = Abbrev6Bit;
else if (Bits == SE_Fixed7)
AbbrevToUse = Abbrev7Bit;
NameVals.push_back(MPSE.getValue());
for (const auto P : MPSE.getKey()) NameVals.push_back((unsigned char)P);
// Emit the finished record.
Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse);
NameVals.clear();
}
Stream.ExitBlock();
}
// Helper to emit a single function summary record.
static void WritePerModuleFunctionSummaryRecord(
SmallVector<unsigned, 64> &NameVals, FunctionSummary *FS, unsigned ValueID,
unsigned FSAbbrev, BitstreamWriter &Stream) {
assert(FS);
NameVals.push_back(ValueID);
NameVals.push_back(FS->isLocalFunction());
NameVals.push_back(FS->instCount());
// Emit the finished record.
Stream.EmitRecord(bitc::FS_CODE_PERMODULE_ENTRY, NameVals, FSAbbrev);
NameVals.clear();
}
/// Emit the per-module function summary section alongside the rest of
/// the module's bitcode.
static void WritePerModuleFunctionSummary(
DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::FUNCTION_SUMMARY_BLOCK_ID, 3);
// Abbrev for FS_CODE_PERMODULE_ENTRY.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_CODE_PERMODULE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // islocal
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
unsigned FSAbbrev = Stream.EmitAbbrev(Abbv);
SmallVector<unsigned, 64> NameVals;
for (auto &I : FunctionIndex) {
// Skip anonymous functions. We will emit a function summary for
// any aliases below.
if (!I.first->hasName()) continue;
WritePerModuleFunctionSummaryRecord(
NameVals, I.second->functionSummary(),
VE.getValueID(M->getValueSymbolTable().lookup(I.first->getName())),
FSAbbrev, Stream);
}
for (const GlobalAlias &A : M->aliases()) {
if (!A.getBaseObject()) continue;
const Function *F = dyn_cast<Function>(A.getBaseObject());
if (!F || F->isDeclaration()) continue;
assert(FunctionIndex.count(F) == 1);
WritePerModuleFunctionSummaryRecord(
NameVals, FunctionIndex[F]->functionSummary(),
VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), FSAbbrev,
Stream);
}
Stream.ExitBlock();
}
/// Emit the combined function summary section into the combined index
/// file.
static void WriteCombinedFunctionSummary(const FunctionInfoIndex *I,
BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::FUNCTION_SUMMARY_BLOCK_ID, 3);
// Abbrev for FS_CODE_COMBINED_ENTRY.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_CODE_COMBINED_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
unsigned FSAbbrev = Stream.EmitAbbrev(Abbv);
SmallVector<unsigned, 64> NameVals;
for (const auto &FII : *I) {
for (auto &FI : FII.getValue()) {
FunctionSummary *FS = FI->functionSummary();
assert(FS);
NameVals.push_back(I->getModuleId(FS->modulePath()));
NameVals.push_back(FS->instCount());
// Record the starting offset of this summary entry for use
// in the VST entry. Add the current code size since the
// reader will invoke readRecord after the abbrev id read.
FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth());
// Emit the finished record.
Stream.EmitRecord(bitc::FS_CODE_COMBINED_ENTRY, NameVals, FSAbbrev);
NameVals.clear();
}
}
Stream.ExitBlock();
}
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream,
bool ShouldPreserveUseListOrder,
uint64_t BitcodeStartBit) {
uint64_t BitcodeStartBit, bool EmitFunctionSummary) {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
SmallVector<unsigned, 1> Vals;
@ -2647,10 +2881,15 @@ static void WriteModule(const Module *M, BitstreamWriter &Stream,
WriteOperandBundleTags(M, Stream);
// Emit function bodies.
DenseMap<const Function *, uint64_t> FunctionIndex;
DenseMap<const Function *, std::unique_ptr<FunctionInfo>> FunctionIndex;
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
if (!F->isDeclaration())
WriteFunction(*F, VE, Stream, FunctionIndex);
WriteFunction(*F, VE, Stream, FunctionIndex, EmitFunctionSummary);
// Need to write after the above call to WriteFunction which populates
// the summary information in the index.
if (EmitFunctionSummary)
WritePerModuleFunctionSummary(FunctionIndex, M, VE, Stream);
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream,
VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex);
@ -2728,10 +2967,22 @@ static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
Buffer.push_back(0);
}
/// Helper to write the header common to all bitcode files.
static void WriteBitcodeHeader(BitstreamWriter &Stream) {
// Emit the file header.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit(0x0, 4);
Stream.Emit(0xC, 4);
Stream.Emit(0xE, 4);
Stream.Emit(0xD, 4);
}
/// WriteBitcodeToFile - Write the specified module to the specified output
/// stream.
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
bool ShouldPreserveUseListOrder) {
bool ShouldPreserveUseListOrder,
bool EmitFunctionSummary) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256*1024);
@ -2751,15 +3002,11 @@ void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
uint64_t BitcodeStartBit = Stream.GetCurrentBitNo();
// Emit the file header.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit(0x0, 4);
Stream.Emit(0xC, 4);
Stream.Emit(0xE, 4);
Stream.Emit(0xD, 4);
WriteBitcodeHeader(Stream);
// Emit the module.
WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit);
WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit,
EmitFunctionSummary);
}
if (TT.isOSDarwin())
@ -2768,3 +3015,38 @@ void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
// Write the generated bitstream to "Out".
Out.write((char*)&Buffer.front(), Buffer.size());
}
// Write the specified function summary index to the given raw output stream,
// where it will be written in a new bitcode block. This is used when
// writing the combined index file for ThinLTO.
void llvm::WriteFunctionSummaryToFile(const FunctionInfoIndex *Index,
raw_ostream &Out) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256 * 1024);
BitstreamWriter Stream(Buffer);
// Emit the bitcode header.
WriteBitcodeHeader(Stream);
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
SmallVector<unsigned, 1> Vals;
unsigned CurVersion = 1;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
// Write the module paths in the combined index.
WriteModStrings(Index, Stream);
// Write the function summary combined index records.
WriteCombinedFunctionSummary(Index, Stream);
// Need a special VST writer for the combined index (we don't have a
// real VST and real values when this is invoked).
WriteCombinedValueSymbolTable(Index, Stream);
Stream.ExitBlock();
Out.write((char *)&Buffer.front(), Buffer.size());
}

View File

@ -19,7 +19,7 @@
using namespace llvm;
PreservedAnalyses BitcodeWriterPass::run(Module &M) {
WriteBitcodeToFile(&M, OS, ShouldPreserveUseListOrder);
WriteBitcodeToFile(&M, OS, ShouldPreserveUseListOrder, EmitFunctionSummary);
return PreservedAnalyses::all();
}
@ -27,17 +27,21 @@ namespace {
class WriteBitcodePass : public ModulePass {
raw_ostream &OS; // raw_ostream to print on
bool ShouldPreserveUseListOrder;
bool EmitFunctionSummary;
public:
static char ID; // Pass identification, replacement for typeid
explicit WriteBitcodePass(raw_ostream &o, bool ShouldPreserveUseListOrder)
explicit WriteBitcodePass(raw_ostream &o, bool ShouldPreserveUseListOrder,
bool EmitFunctionSummary)
: ModulePass(ID), OS(o),
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {}
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder),
EmitFunctionSummary(EmitFunctionSummary) {}
const char *getPassName() const override { return "Bitcode Writer"; }
bool runOnModule(Module &M) override {
WriteBitcodeToFile(&M, OS, ShouldPreserveUseListOrder);
WriteBitcodeToFile(&M, OS, ShouldPreserveUseListOrder,
EmitFunctionSummary);
return false;
}
};
@ -46,6 +50,8 @@ namespace {
char WriteBitcodePass::ID = 0;
ModulePass *llvm::createBitcodeWriterPass(raw_ostream &Str,
bool ShouldPreserveUseListOrder) {
return new WriteBitcodePass(Str, ShouldPreserveUseListOrder);
bool ShouldPreserveUseListOrder,
bool EmitFunctionSummary) {
return new WriteBitcodePass(Str, ShouldPreserveUseListOrder,
EmitFunctionSummary);
}

View File

@ -39,6 +39,7 @@ add_llvm_library(LLVMCore
PassManager.cpp
PassRegistry.cpp
Statepoint.cpp
FunctionInfo.cpp
Type.cpp
TypeFinder.cpp
Use.cpp

63
lib/IR/FunctionInfo.cpp Normal file
View File

@ -0,0 +1,63 @@
//===-- FunctionInfo.cpp - Function Info Index ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the function info index and summary classes for the
// IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/FunctionInfo.h"
#include "llvm/ADT/StringMap.h"
using namespace llvm;
// Create the combined function index/summary from multiple
// per-module instances.
void FunctionInfoIndex::mergeFrom(std::unique_ptr<FunctionInfoIndex> Other,
uint64_t NextModuleId) {
StringRef ModPath;
for (auto &OtherFuncInfoLists : *Other) {
StringRef FuncName = OtherFuncInfoLists.getKey();
FunctionInfoList &List = OtherFuncInfoLists.second;
// Assert that the func info list only has one entry, since we shouldn't
// have duplicate names within a single per-module index.
assert(List.size() == 1);
std::unique_ptr<FunctionInfo> Info = std::move(List.front());
// Add the module path string ref for this module if we haven't already
// saved a reference to it.
if (ModPath.empty())
ModPath =
addModulePath(Info->functionSummary()->modulePath(), NextModuleId);
else
assert(ModPath == Info->functionSummary()->modulePath() &&
"Each module in the combined map should have a unique ID");
// Note the module path string ref was copied above and is still owned by
// the original per-module index. Reset it to the new module path
// string reference owned by the combined index.
Info->functionSummary()->setModulePath(ModPath);
// If it is a local function, rename it.
if (Info->functionSummary()->isLocalFunction()) {
// Any local functions are virtually renamed when being added to the
// combined index map, to disambiguate from other functions with
// the same name. The symbol table created for the combined index
// file should contain the renamed symbols.
FuncName =
FunctionInfoIndex::getGlobalNameForLocal(FuncName, NextModuleId);
}
// Add new function info to existing list. There may be duplicates when
// combining FunctionMap entries, due to COMDAT functions. Any local
// functions were virtually renamed above.
addFunctionInfo(FuncName, std::move(Info));
}
}

View File

@ -16,6 +16,7 @@ add_llvm_library(LLVMObject
RecordStreamer.cpp
SymbolicFile.cpp
SymbolSize.cpp
FunctionIndexObjectFile.cpp
ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/Object

View File

@ -0,0 +1,114 @@
//===- FunctionIndexObjectFile.cpp - Function index file implementation ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the FunctionIndexObjectFile class implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/FunctionIndexObjectFile.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/FunctionInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace object;
FunctionIndexObjectFile::FunctionIndexObjectFile(
MemoryBufferRef Object, std::unique_ptr<FunctionInfoIndex> I)
: SymbolicFile(Binary::ID_FunctionIndex, Object), Index(std::move(I)) {}
FunctionIndexObjectFile::~FunctionIndexObjectFile() {}
std::unique_ptr<FunctionInfoIndex> FunctionIndexObjectFile::takeIndex() {
return std::move(Index);
}
ErrorOr<MemoryBufferRef> FunctionIndexObjectFile::findBitcodeInObject(
const ObjectFile &Obj) {
for (const SectionRef &Sec : Obj.sections()) {
StringRef SecName;
if (std::error_code EC = Sec.getName(SecName)) return EC;
if (SecName == ".llvmbc") {
StringRef SecContents;
if (std::error_code EC = Sec.getContents(SecContents)) return EC;
return MemoryBufferRef(SecContents, Obj.getFileName());
}
}
return object_error::bitcode_section_not_found;
}
ErrorOr<MemoryBufferRef> FunctionIndexObjectFile::findBitcodeInMemBuffer(
MemoryBufferRef Object) {
sys::fs::file_magic Type = sys::fs::identify_magic(Object.getBuffer());
switch (Type) {
case sys::fs::file_magic::bitcode:
return Object;
case sys::fs::file_magic::elf_relocatable:
case sys::fs::file_magic::macho_object:
case sys::fs::file_magic::coff_object: {
ErrorOr<std::unique_ptr<ObjectFile>> ObjFile =
ObjectFile::createObjectFile(Object, Type);
if (!ObjFile) return ObjFile.getError();
return findBitcodeInObject(*ObjFile->get());
}
default:
return object_error::invalid_file_type;
}
}
// Looks for function index in the given memory buffer.
// returns true if found, else false.
bool FunctionIndexObjectFile::hasFunctionSummaryInMemBuffer(
MemoryBufferRef Object, LLVMContext &Context) {
ErrorOr<MemoryBufferRef> BCOrErr = findBitcodeInMemBuffer(Object);
if (!BCOrErr) return false;
return hasFunctionSummary(BCOrErr.get(), Context, nullptr);
}
// Parse function index in the given memory buffer.
// Return new FunctionIndexObjectFile instance containing parsed
// function summary/index.
ErrorOr<std::unique_ptr<FunctionIndexObjectFile>>
FunctionIndexObjectFile::create(MemoryBufferRef Object, LLVMContext &Context,
bool IsLazy) {
std::unique_ptr<FunctionInfoIndex> Index;
ErrorOr<MemoryBufferRef> BCOrErr = findBitcodeInMemBuffer(Object);
if (!BCOrErr) return BCOrErr.getError();
ErrorOr<std::unique_ptr<FunctionInfoIndex>> IOrErr =
getFunctionInfoIndex(BCOrErr.get(), Context, nullptr, IsLazy);
if (std::error_code EC = IOrErr.getError()) return EC;
Index = std::move(IOrErr.get());
return llvm::make_unique<FunctionIndexObjectFile>(Object, std::move(Index));
}
// Parse the function summary information for function with the
// given name out of the given buffer. Parsed information is
// stored on the index object saved in this object.
std::error_code FunctionIndexObjectFile::findFunctionSummaryInMemBuffer(
MemoryBufferRef Object, LLVMContext &Context, StringRef FunctionName) {
sys::fs::file_magic Type = sys::fs::identify_magic(Object.getBuffer());
switch (Type) {
case sys::fs::file_magic::bitcode: {
return readFunctionSummary(Object, Context, nullptr, FunctionName,
std::move(Index));
}
default:
return object_error::invalid_file_type;
}
}

View File

@ -0,0 +1,45 @@
; RUN: llvm-as -function-summary < %s | llvm-bcanalyzer -dump | FileCheck %s -check-prefix=BC
; Check for function summary block/records.
; BC: <FUNCTION_SUMMARY_BLOCK
; BC-NEXT: <PERMODULE_ENTRY
; BC-NEXT: <PERMODULE_ENTRY
; BC-NEXT: <PERMODULE_ENTRY
; BC-NEXT: </FUNCTION_SUMMARY_BLOCK
; RUN: llvm-as -function-summary < %s | llvm-dis | FileCheck %s
; Check that this round-trips correctly.
; ModuleID = '<stdin>'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; CHECK: define i32 @foo()
; Function Attrs: nounwind uwtable
define i32 @foo() #0 {
entry:
ret i32 1
}
; CHECK: define i32 @bar(i32 %x)
; Function Attrs: nounwind uwtable
define i32 @bar(i32 %x) #0 {
entry:
ret i32 %x
}
; Check an anonymous function as well, since in that case only the alias
; ends up in the value symbol table and having a summary.
@f = alias void (), void ()* @0 ; <void ()*> [#uses=0]
@h = external global void ()* ; <void ()*> [#uses=0]
define internal void @0() nounwind {
entry:
store void()* @0, void()** @h
br label %return
return: ; preds = %entry
ret void
}

View File

@ -0,0 +1,4 @@
define void @g() {
entry:
ret void
}

View File

@ -0,0 +1,22 @@
; RUN: llvm-as -function-summary %s -o %t.o
; RUN: llvm-as -function-summary %p/Inputs/thinlto.ll -o %t2.o
; RUN: %gold -plugin %llvmshlibdir/LLVMgold.so \
; RUN: --plugin-opt=thinlto \
; RUN: -shared %t.o %t2.o -o %t3
; RUN: llvm-bcanalyzer -dump %t3.thinlto.bc | FileCheck %s --check-prefix=COMBINED
; RUN: not test -e %t3
; COMBINED: <MODULE_STRTAB_BLOCK
; COMBINED-NEXT: <ENTRY
; COMBINED-NEXT: <ENTRY
; COMBINED-NEXT: </MODULE_STRTAB_BLOCK
; COMBINED-NEXT: <FUNCTION_SUMMARY_BLOCK
; COMBINED-NEXT: <COMBINED_ENTRY
; COMBINED-NEXT: <COMBINED_ENTRY
; COMBINED-NEXT: </FUNCTION_SUMMARY_BLOCK
define void @f() {
entry:
ret void
}

View File

@ -32,6 +32,7 @@
#include "llvm/Linker/Linker.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/FunctionIndexObjectFile.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ManagedStatic.h"
@ -103,6 +104,10 @@ namespace options {
static std::string extra_library_path;
static std::string triple;
static std::string mcpu;
// When the thinlto plugin option is specified, only read the function
// the information from intermediate files and write a combined
// global index for the ThinLTO backends.
static bool thinlto = false;
// Additional options to pass into the code generator.
// Note: This array will contain all plugin options which are not claimed
// as plugin exclusive to pass to the code generator.
@ -132,6 +137,8 @@ namespace options {
TheOutputType = OT_SAVE_TEMPS;
} else if (opt == "disable-output") {
TheOutputType = OT_DISABLE;
} else if (opt == "thinlto") {
thinlto = true;
} else if (opt.size() == 2 && opt[0] == 'O') {
if (opt[1] < '0' || opt[1] > '3')
message(LDPL_FATAL, "Optimization level must be between 0 and 3");
@ -376,6 +383,10 @@ static ld_plugin_status claim_file_hook(const ld_plugin_input_file *file,
cf.handle = file->handle;
// If we are doing ThinLTO compilation, don't need to process the symbols.
// Later we simply build a combined index file after all files are claimed.
if (options::thinlto) return LDPS_OK;
for (auto &Sym : Obj->symbols()) {
uint32_t Symflags = Sym.getFlags();
if (shouldSkip(Symflags))
@ -591,6 +602,30 @@ static void freeSymName(ld_plugin_symbol &Sym) {
Sym.comdat_key = nullptr;
}
static std::unique_ptr<FunctionInfoIndex> getFunctionIndexForFile(
LLVMContext &Context, claimed_file &F, ld_plugin_input_file &Info) {
if (get_symbols(F.handle, F.syms.size(), &F.syms[0]) != LDPS_OK)
message(LDPL_FATAL, "Failed to get symbol information");
const void *View;
if (get_view(F.handle, &View) != LDPS_OK)
message(LDPL_FATAL, "Failed to get a view of file");
MemoryBufferRef BufferRef(StringRef((const char *)View, Info.filesize),
Info.name);
ErrorOr<std::unique_ptr<object::FunctionIndexObjectFile>> ObjOrErr =
object::FunctionIndexObjectFile::create(BufferRef, Context);
if (std::error_code EC = ObjOrErr.getError())
message(LDPL_FATAL, "Could not read function index bitcode from file : %s",
EC.message().c_str());
object::FunctionIndexObjectFile &Obj = **ObjOrErr;
return Obj.takeIndex();
}
static std::unique_ptr<Module>
getModuleForFile(LLVMContext &Context, claimed_file &F,
ld_plugin_input_file &Info, raw_fd_ostream *ApiFile,
@ -857,6 +892,35 @@ static ld_plugin_status allSymbolsReadHook(raw_fd_ostream *ApiFile) {
LLVMContext Context;
Context.setDiagnosticHandler(diagnosticHandler, nullptr, true);
// If we are doing ThinLTO compilation, simply build the combined
// function index/summary and emit it. We don't need to parse the modules
// and link them in this case.
if (options::thinlto) {
std::unique_ptr<FunctionInfoIndex> CombinedIndex(new FunctionInfoIndex());
uint64_t NextModuleId = 0;
for (claimed_file &F : Modules) {
ld_plugin_input_file File;
if (get_input_file(F.handle, &File) != LDPS_OK)
message(LDPL_FATAL, "Failed to get file information");
std::unique_ptr<FunctionInfoIndex> Index =
getFunctionIndexForFile(Context, F, File);
CombinedIndex->mergeFrom(std::move(Index), ++NextModuleId);
}
std::error_code EC;
raw_fd_ostream OS(output_name + ".thinlto.bc", EC,
sys::fs::OpenFlags::F_None);
if (EC)
message(LDPL_FATAL, "Unable to open %s.thinlto.bc for writing: %s",
output_name.data(), EC.message().c_str());
WriteFunctionSummaryToFile(CombinedIndex.get(), OS);
OS.close();
cleanup_hook();
exit(0);
}
std::unique_ptr<Module> Combined(new Module("ld-temp.o", Context));
Linker L(Combined.get());

View File

@ -44,6 +44,10 @@ Force("f", cl::desc("Enable binary output on terminals"));
static cl::opt<bool>
DisableOutput("disable-output", cl::desc("Disable output"), cl::init(false));
static cl::opt<bool>
EmitFunctionSummary("function-summary", cl::desc("Emit function summary index"),
cl::init(false));
static cl::opt<bool>
DumpAsm("d", cl::desc("Print assembly as parsed"), cl::Hidden);
@ -77,7 +81,8 @@ static void WriteOutputFile(const Module *M) {
}
if (Force || !CheckBitcodeOutputToConsole(Out->os(), true))
WriteBitcodeToFile(M, Out->os(), PreserveBitcodeUseListOrder);
WriteBitcodeToFile(M, Out->os(), PreserveBitcodeUseListOrder,
EmitFunctionSummary);
// Declare success.
Out->keep();

View File

@ -114,6 +114,9 @@ static const char *GetBlockName(unsigned BlockID,
case bitc::METADATA_BLOCK_ID: return "METADATA_BLOCK";
case bitc::METADATA_ATTACHMENT_ID: return "METADATA_ATTACHMENT_BLOCK";
case bitc::USELIST_BLOCK_ID: return "USELIST_BLOCK_ID";
case bitc::FUNCTION_SUMMARY_BLOCK_ID:
return "FUNCTION_SUMMARY_BLOCK";
case bitc::MODULE_STRTAB_BLOCK_ID: return "MODULE_STRTAB_BLOCK";
}
}
@ -268,6 +271,18 @@ static const char *GetCodeName(unsigned CodeID, unsigned BlockID,
STRINGIFY_CODE(VST_CODE, ENTRY)
STRINGIFY_CODE(VST_CODE, BBENTRY)
STRINGIFY_CODE(VST_CODE, FNENTRY)
STRINGIFY_CODE(VST_CODE, COMBINED_FNENTRY)
}
case bitc::MODULE_STRTAB_BLOCK_ID:
switch (CodeID) {
default: return nullptr;
STRINGIFY_CODE(MST_CODE, ENTRY)
}
case bitc::FUNCTION_SUMMARY_BLOCK_ID:
switch (CodeID) {
default: return nullptr;
STRINGIFY_CODE(FS_CODE, PERMODULE_ENTRY)
STRINGIFY_CODE(FS_CODE, COMBINED_ENTRY)
}
case bitc::METADATA_ATTACHMENT_ID:
switch(CodeID) {