mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-26 13:10:34 +00:00
Initial checkin of Datastructure analysis.
Has bugs, but shouldn't crash in theory. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1994 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
d9ddf05014
commit
bb2a28fec5
265
lib/Analysis/DataStructure/ComputeClosure.cpp
Normal file
265
lib/Analysis/DataStructure/ComputeClosure.cpp
Normal file
@ -0,0 +1,265 @@
|
||||
//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===//
|
||||
//
|
||||
// Compute the interprocedural closure of a data structure graph
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs
|
||||
//#define DEBUG_IP_CLOSURE 1
|
||||
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
#ifdef DEBUG_IP_CLOSURE
|
||||
#include "llvm/Assembly/Writer.h"
|
||||
#endif
|
||||
|
||||
// copyEdgesFromTo - Make a copy of all of the edges to Node to also point
|
||||
// PV. If there are edges out of Node, the edges are added to the subgraph
|
||||
// starting at PV.
|
||||
//
|
||||
static void copyEdgesFromTo(DSNode *Node, const PointerValSet &PVS) {
|
||||
// Make all of the pointers that pointed to Node now also point to PV...
|
||||
const vector<PointerValSet*> &PVSToUpdate(Node->getReferrers());
|
||||
for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i)
|
||||
for (unsigned pn = 0, pne = PVS.size(); pn != pne; ++pn)
|
||||
PVSToUpdate[i]->add(PVS[pn]);
|
||||
}
|
||||
|
||||
static void CalculateNodeMapping(ShadowDSNode *Shadow, DSNode *Node,
|
||||
multimap<ShadowDSNode *, DSNode *> &NodeMapping) {
|
||||
#ifdef DEBUG_IP_CLOSURE
|
||||
cerr << "Mapping " << (void*)Shadow << " to " << (void*)Node << "\n";
|
||||
cerr << "Type = '" << Shadow->getType() << "' and '"
|
||||
<< Node->getType() << "'\n";
|
||||
cerr << "Shadow Node:\n";
|
||||
Shadow->print(cerr);
|
||||
cerr << "\nMapped Node:\n";
|
||||
Node->print(cerr);
|
||||
#endif
|
||||
assert(Shadow->getType() == Node->getType() &&
|
||||
"Shadow and mapped nodes disagree about type!");
|
||||
|
||||
multimap<ShadowDSNode *, DSNode *>::iterator
|
||||
NI = NodeMapping.lower_bound(Shadow),
|
||||
NE = NodeMapping.upper_bound(Shadow);
|
||||
|
||||
for (; NI != NE; ++NI)
|
||||
if (NI->second == Node) return; // Already processed node, return.
|
||||
|
||||
NodeMapping.insert(make_pair(Shadow, Node)); // Add a mapping...
|
||||
|
||||
// Loop over all of the outgoing links in the shadow node...
|
||||
//
|
||||
assert(Node->getNumLinks() == Shadow->getNumLinks() &&
|
||||
"Same type, but different number of links?");
|
||||
for (unsigned i = 0, e = Shadow->getNumLinks(); i != e; ++i) {
|
||||
PointerValSet &Link = Shadow->getLink(i);
|
||||
|
||||
// Loop over all of the values coming out of this pointer...
|
||||
for (unsigned l = 0, le = Link.size(); l != le; ++l) {
|
||||
// If the outgoing node points to a shadow node, map the shadow node to
|
||||
// all of the outgoing values in Node.
|
||||
//
|
||||
if (ShadowDSNode *ShadOut = dyn_cast<ShadowDSNode>(Link[l].Node)) {
|
||||
PointerValSet &NLink = Node->getLink(i);
|
||||
for (unsigned ol = 0, ole = NLink.size(); ol != ole; ++ol)
|
||||
CalculateNodeMapping(ShadOut, NLink[ol].Node, NodeMapping);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void ResolveNodesTo(const PointerVal &FromPtr,
|
||||
const PointerValSet &ToVals) {
|
||||
assert(FromPtr.Index == 0 &&
|
||||
"Resolved node return pointer should be index 0!");
|
||||
if (!isa<ShadowDSNode>(FromPtr.Node)) return;
|
||||
|
||||
ShadowDSNode *Shadow = cast<ShadowDSNode>(FromPtr.Node);
|
||||
|
||||
typedef multimap<ShadowDSNode *, DSNode *> ShadNodeMapTy;
|
||||
ShadNodeMapTy NodeMapping;
|
||||
for (unsigned i = 0, e = ToVals.size(); i != e; ++i)
|
||||
CalculateNodeMapping(Shadow, ToVals[i].Node, NodeMapping);
|
||||
|
||||
copyEdgesFromTo(Shadow, ToVals);
|
||||
|
||||
// Now loop through the shadow node graph, mirroring the edges in the shadow
|
||||
// graph onto the realized graph...
|
||||
//
|
||||
for (ShadNodeMapTy::iterator I = NodeMapping.begin(),
|
||||
E = NodeMapping.end(); I != E; ++I) {
|
||||
DSNode *Node = I->second;
|
||||
ShadowDSNode *ShadNode = I->first;
|
||||
|
||||
// Must loop over edges in the shadow graph, adding edges in the real graph
|
||||
// that correspond to to the edges, but are mapped into real values by the
|
||||
// NodeMapping.
|
||||
//
|
||||
for (unsigned i = 0, e = Node->getNumLinks(); i != e; ++i) {
|
||||
const PointerValSet &ShadLinks = ShadNode->getLink(i);
|
||||
PointerValSet &NewLinks = Node->getLink(i);
|
||||
|
||||
// Add a link to all of the nodes pointed to by the shadow field...
|
||||
for (unsigned l = 0, le = ShadLinks.size(); l != le; ++l) {
|
||||
DSNode *ShadLink = ShadLinks[l].Node;
|
||||
|
||||
if (ShadowDSNode *SL = dyn_cast<ShadowDSNode>(ShadLink)) {
|
||||
// Loop over all of the values in the range
|
||||
ShadNodeMapTy::iterator St = NodeMapping.lower_bound(SL),
|
||||
En = NodeMapping.upper_bound(SL);
|
||||
if (St != En) {
|
||||
for (; St != En; ++St)
|
||||
NewLinks.add(PointerVal(St->second, ShadLinks[l].Index));
|
||||
} else {
|
||||
// We must retain the shadow node...
|
||||
NewLinks.add(ShadLinks[l]);
|
||||
}
|
||||
} else {
|
||||
// Otherwise, add a direct link to the data structure pointed to by
|
||||
// the shadow node...
|
||||
NewLinks.add(ShadLinks[l]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ResolveNodeTo - The specified node is now known to point to the set of values
|
||||
// in ToVals, instead of the old shadow node subgraph that it was pointing to.
|
||||
//
|
||||
static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) {
|
||||
assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!");
|
||||
|
||||
PointerValSet PVS = Node->getLink(0);
|
||||
|
||||
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
|
||||
ResolveNodesTo(PVS[i], ToVals);
|
||||
}
|
||||
|
||||
// isResolvableCallNode - Return true if node is a call node and it is a call
|
||||
// node that we can inline...
|
||||
//
|
||||
static bool isResolvableCallNode(DSNode *N) {
|
||||
// Only operate on call nodes...
|
||||
CallDSNode *CN = dyn_cast<CallDSNode>(N);
|
||||
if (CN == 0) return false;
|
||||
|
||||
// Only operate on call nodes with direct method calls
|
||||
Function *F = CN->getCall()->getCalledFunction();
|
||||
if (F == 0) return false;
|
||||
|
||||
// Only work on call nodes with direct calls to methods with bodies.
|
||||
return !F->isExternal();
|
||||
}
|
||||
|
||||
|
||||
// computeClosure - Replace all of the resolvable call nodes with the contents
|
||||
// of their corresponding method data structure graph...
|
||||
//
|
||||
void FunctionDSGraph::computeClosure(const DataStructure &DS) {
|
||||
vector<DSNode*>::iterator NI = std::find_if(Nodes.begin(), Nodes.end(),
|
||||
isResolvableCallNode);
|
||||
|
||||
map<Function*, unsigned> InlineCount; // FIXME
|
||||
|
||||
// Loop over the resolvable call nodes...
|
||||
while (NI != Nodes.end()) {
|
||||
CallDSNode *CN = cast<CallDSNode>(*NI);
|
||||
Function *F = CN->getCall()->getCalledFunction();
|
||||
//if (F == Func) return; // Do not do self inlining
|
||||
|
||||
// FIXME: Gross hack to prevent explosions when inlining a recursive func.
|
||||
if (InlineCount[F]++ > 2) return;
|
||||
|
||||
Nodes.erase(NI); // Remove the call node from the graph
|
||||
|
||||
unsigned CallNodeOffset = NI-Nodes.begin();
|
||||
|
||||
// StartNode - The first node of the incorporated graph, last node of the
|
||||
// preexisting data structure graph...
|
||||
//
|
||||
unsigned StartNode = Nodes.size();
|
||||
|
||||
// Hold the set of values that correspond to the incorporated methods
|
||||
// return set.
|
||||
//
|
||||
PointerValSet RetVals;
|
||||
|
||||
if (F != Func) { // If this is not a recursive call...
|
||||
// Get the datastructure graph for the new method. Note that we are not
|
||||
// allowed to modify this graph because it will be the cached graph that
|
||||
// is returned by other users that want the local datastructure graph for
|
||||
// a method.
|
||||
//
|
||||
const FunctionDSGraph &NewFunction = DS.getDSGraph(F);
|
||||
|
||||
// Incorporate a copy of the called function graph into the current graph,
|
||||
// allowing us to do local transformations to local graph to link
|
||||
// arguments to call values, and call node to return value...
|
||||
//
|
||||
RetVals = cloneFunctionIntoSelf(NewFunction, false);
|
||||
|
||||
} else { // We are looking at a recursive function!
|
||||
StartNode = 0; // Arg nodes start at 0 now...
|
||||
RetVals = RetNode;
|
||||
}
|
||||
|
||||
// If the function returns a pointer value... Resolve values pointing to
|
||||
// the shadow nodes pointed to by CN to now point the values in RetVals...
|
||||
//
|
||||
if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals);
|
||||
|
||||
// If the call node has arguments, process them now!
|
||||
if (CN->getNumArgs()) {
|
||||
// The ArgNodes of the incorporated graph should be the nodes starting at
|
||||
// StartNode, ordered the same way as the call arguments. The arg nodes
|
||||
// are seperated by a single shadow node, so we need to be sure to step
|
||||
// over them.
|
||||
//
|
||||
unsigned ArgOffset = StartNode;
|
||||
for (unsigned i = 0, e = CN->getNumArgs(); i != e; ++i) {
|
||||
// Get the arg node of the incorporated method...
|
||||
ArgDSNode *ArgNode = cast<ArgDSNode>(Nodes[ArgOffset]);
|
||||
|
||||
// Now we make all of the nodes inside of the incorporated method point
|
||||
// to the real arguments values, not to the shadow nodes for the
|
||||
// argument.
|
||||
//
|
||||
ResolveNodeTo(ArgNode, CN->getArgValues(i));
|
||||
|
||||
if (StartNode == 0) { // Self recursion?
|
||||
ArgOffset += 2; // Skip over the argument & the shadow node...
|
||||
} else {
|
||||
// Remove the argnode from the set of nodes in this method...
|
||||
Nodes.erase(Nodes.begin()+ArgOffset);
|
||||
|
||||
// ArgNode is no longer useful, delete now!
|
||||
delete ArgNode;
|
||||
|
||||
ArgOffset++; // Skip over the shadow node for the argument
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now the call node is completely destructable. Eliminate it now.
|
||||
delete CN;
|
||||
|
||||
// Eliminate shadow nodes that are not distinguishable from some other
|
||||
// node in the graph...
|
||||
//
|
||||
UnlinkUndistinguishableShadowNodes();
|
||||
|
||||
// Eliminate shadow nodes that are now extraneous due to linking...
|
||||
RemoveUnreachableShadowNodes();
|
||||
|
||||
//if (F == Func) return; // Only do one self inlining
|
||||
|
||||
// Move on to the next call node...
|
||||
NI = std::find_if(Nodes.begin(), Nodes.end(), isResolvableCallNode);
|
||||
}
|
||||
}
|
117
lib/Analysis/DataStructure/DataStructure.cpp
Normal file
117
lib/Analysis/DataStructure/DataStructure.cpp
Normal file
@ -0,0 +1,117 @@
|
||||
//===- DataStructure.cpp - Analysis for data structure identification -------=//
|
||||
//
|
||||
// Implement the LLVM data structure analysis library.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Function.h"
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DataStructure Class Implementation
|
||||
//
|
||||
|
||||
AnalysisID DataStructure::ID(AnalysisID::create<DataStructure>());
|
||||
|
||||
// releaseMemory - If the pass pipeline is done with this pass, we can release
|
||||
// our memory... here...
|
||||
void DataStructure::releaseMemory() {
|
||||
for (InfoMap::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) {
|
||||
delete I->second.first;
|
||||
delete I->second.second;
|
||||
}
|
||||
|
||||
// Empty map so next time memory is released, data structures are not
|
||||
// re-deleted.
|
||||
DSInfo.clear();
|
||||
}
|
||||
|
||||
|
||||
// print - Print out the analysis results...
|
||||
void DataStructure::print(std::ostream &O, Module *M) const {
|
||||
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if (!(*I)->isExternal()) {
|
||||
|
||||
string Filename = "ds." + (*I)->getName() + ".dot";
|
||||
O << "Writing '" << Filename << "'...\n";
|
||||
ofstream F(Filename.c_str());
|
||||
if (F.good()) {
|
||||
F << "digraph DataStructures {\n"
|
||||
<< "\tnode [shape=Mrecord];\n"
|
||||
<< "\tedge [arrowtail=\"dot\"];\n"
|
||||
<< "\tsize=\"10,7.5\";\n"
|
||||
<< "\trotate=\"90\";\n";
|
||||
|
||||
getDSGraph(*I).printFunction(F, "Local");
|
||||
getClosedDSGraph(*I).printFunction(F, "Closed");
|
||||
|
||||
F << "}\n";
|
||||
} else {
|
||||
O << " error opening file for writing!\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// PointerVal Class Implementation
|
||||
//
|
||||
|
||||
void PointerVal::print(std::ostream &O) const {
|
||||
if (Node) {
|
||||
O << " Node: " << Node->getCaption() << "[" << Index << "]\n";
|
||||
} else {
|
||||
O << " NULL NODE\n";
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// PointerValSet Class Implementation
|
||||
//
|
||||
|
||||
void PointerValSet::addRefs() {
|
||||
for (unsigned i = 0, e = Vals.size(); i != e; ++i)
|
||||
Vals[i].Node->addReferrer(this);
|
||||
}
|
||||
|
||||
void PointerValSet::dropRefs() {
|
||||
for (unsigned i = 0, e = Vals.size(); i != e; ++i)
|
||||
Vals[i].Node->removeReferrer(this);
|
||||
}
|
||||
|
||||
const PointerValSet &PointerValSet::operator=(const PointerValSet &PVS) {
|
||||
dropRefs();
|
||||
Vals.clear();
|
||||
Vals = PVS.Vals;
|
||||
addRefs();
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
bool PointerValSet::add(const PointerVal &PV, Value *Pointer) {
|
||||
if (std::find(Vals.begin(), Vals.end(), PV) != Vals.end())
|
||||
return false;
|
||||
Vals.push_back(PV);
|
||||
if (Pointer) PV.Node->addPointer(Pointer);
|
||||
PV.Node->addReferrer(this);
|
||||
return true;
|
||||
}
|
||||
|
||||
// removePointerTo - Remove a single pointer val that points to the specified
|
||||
// node...
|
||||
void PointerValSet::removePointerTo(DSNode *Node) {
|
||||
vector<PointerVal>::iterator I = std::find(Vals.begin(), Vals.end(), Node);
|
||||
assert(I != Vals.end() && "Couldn't remove nonexistent edge!");
|
||||
Vals.erase(I);
|
||||
Node->removeReferrer(this);
|
||||
}
|
||||
|
||||
|
||||
void PointerValSet::print(std::ostream &O) const {
|
||||
for (unsigned i = 0, e = Vals.size(); i != e; ++i)
|
||||
Vals[i].print(O);
|
||||
}
|
||||
|
127
lib/Analysis/DataStructure/EliminateNodes.cpp
Normal file
127
lib/Analysis/DataStructure/EliminateNodes.cpp
Normal file
@ -0,0 +1,127 @@
|
||||
//===- ShadowNodeEliminate.cpp - Optimize away shadow nodes ---------------===//
|
||||
//
|
||||
// This file contains two shadow node optimizations:
|
||||
// 1. UnlinkUndistinguishableShadowNodes - Often, after unification, shadow
|
||||
// nodes are left around that should not exist anymore. An example is when
|
||||
// a shadow gets unified with a 'new' node, the following graph gets
|
||||
// generated: %X -> Shadow, %X -> New. Since all of the edges to the
|
||||
// shadow node also all go to the New node, we can eliminate the shadow.
|
||||
//
|
||||
// 2. RemoveUnreachableShadowNodes - Remove shadow nodes that are not
|
||||
// reachable from some other node in the graph. Unreachable shadow nodes
|
||||
// are left lying around because other transforms don't go to the trouble
|
||||
// or removing them, since this pass exists.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Value.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
|
||||
// removeEdgesTo - Erase all edges in the graph that point to the specified node
|
||||
static void removeEdgesTo(DSNode *Node) {
|
||||
while (!Node->getReferrers().empty()) {
|
||||
PointerValSet *PVS = Node->getReferrers().back();
|
||||
PVS->removePointerTo(Node);
|
||||
}
|
||||
}
|
||||
|
||||
// UnlinkUndistinguishableShadowNodes - Eliminate shadow nodes that are not
|
||||
// distinguishable from some other node in the graph...
|
||||
//
|
||||
void FunctionDSGraph::UnlinkUndistinguishableShadowNodes() {
|
||||
// TODO:
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
static void MarkReferredNodesReachable(DSNode *N, vector<ShadowDSNode*> &Nodes,
|
||||
vector<bool> &Reachable);
|
||||
|
||||
static inline void MarkReferredNodeSetReachable(const PointerValSet &PVS,
|
||||
vector<ShadowDSNode*> &Nodes,
|
||||
vector<bool> &Reachable) {
|
||||
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
|
||||
if (ShadowDSNode *Shad = dyn_cast<ShadowDSNode>(PVS[i].Node))
|
||||
MarkReferredNodesReachable(Shad, Nodes, Reachable);
|
||||
}
|
||||
|
||||
static void MarkReferredNodesReachable(DSNode *N, vector<ShadowDSNode*> &Nodes,
|
||||
vector<bool> &Reachable) {
|
||||
assert(Nodes.size() == Reachable.size());
|
||||
ShadowDSNode *Shad = dyn_cast<ShadowDSNode>(N);
|
||||
|
||||
if (Shad) {
|
||||
vector<ShadowDSNode*>::iterator I =
|
||||
std::find(Nodes.begin(), Nodes.end(), Shad);
|
||||
unsigned i = I-Nodes.begin();
|
||||
if (Reachable[i]) return; // Recursion detected, abort...
|
||||
Reachable[i] = true;
|
||||
}
|
||||
|
||||
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
|
||||
MarkReferredNodeSetReachable(N->getLink(i), Nodes, Reachable);
|
||||
|
||||
const std::vector<PointerValSet> *Links = N->getAuxLinks();
|
||||
if (Links)
|
||||
for (unsigned i = 0, e = Links->size(); i != e; ++i)
|
||||
MarkReferredNodeSetReachable((*Links)[i], Nodes, Reachable);
|
||||
}
|
||||
|
||||
void FunctionDSGraph::RemoveUnreachableShadowNodes() {
|
||||
while (1) {
|
||||
|
||||
// Reachable - Contains true if there is an edge from a nonshadow node to
|
||||
// the numbered node...
|
||||
//
|
||||
vector<bool> Reachable(ShadowNodes.size());
|
||||
|
||||
// Mark all shadow nodes that have edges from other nodes as reachable.
|
||||
// Recursively mark any shadow nodes pointed to by the newly live shadow
|
||||
// nodes as also alive.
|
||||
//
|
||||
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
|
||||
// Loop over all of the nodes referred and mark them live if they are
|
||||
// shadow nodes...
|
||||
MarkReferredNodesReachable(Nodes[i], ShadowNodes, Reachable);
|
||||
|
||||
// Mark all nodes in the return set as being reachable...
|
||||
MarkReferredNodeSetReachable(RetNode, ShadowNodes, Reachable);
|
||||
|
||||
// Mark all nodes in the value map as being reachable...
|
||||
for (std::map<Value*, PointerValSet>::iterator I = ValueMap.begin(),
|
||||
E = ValueMap.end(); I != E; ++I)
|
||||
MarkReferredNodeSetReachable(I->second, ShadowNodes, Reachable);
|
||||
|
||||
|
||||
// At this point, all reachable shadow nodes have a true value in the
|
||||
// Reachable vector. This means that any shadow nodes without an entry in
|
||||
// the reachable vector are not reachable and should be removed. This is
|
||||
// a two part process, because we must drop all references before we delete
|
||||
// the shadow nodes [in case cycles exist].
|
||||
//
|
||||
vector<ShadowDSNode*> DeadNodes;
|
||||
for (unsigned i = 0; i != ShadowNodes.size(); ++i)
|
||||
if (!Reachable[i]) {
|
||||
// Track all unreachable nodes...
|
||||
#if 0
|
||||
cerr << "Unreachable node eliminated:\n";
|
||||
ShadowNodes[i]->print(cerr);
|
||||
#endif
|
||||
DeadNodes.push_back(ShadowNodes[i]);
|
||||
ShadowNodes[i]->dropAllReferences(); // Drop references to other nodes
|
||||
Reachable.erase(Reachable.begin()+i); // Remove from reachable...
|
||||
ShadowNodes.erase(ShadowNodes.begin()+i); // Remove node entry
|
||||
--i; // Don't skip the next node.
|
||||
}
|
||||
|
||||
if (DeadNodes.empty()) return; // No more dead nodes...
|
||||
|
||||
// All dead nodes are in the DeadNodes vector... delete them now.
|
||||
for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>);
|
||||
}
|
||||
}
|
331
lib/Analysis/DataStructure/FunctionRepBuilder.cpp
Normal file
331
lib/Analysis/DataStructure/FunctionRepBuilder.cpp
Normal file
@ -0,0 +1,331 @@
|
||||
//===- FunctionRepBuilder.cpp - Build the datastructure graph for a method --===//
|
||||
//
|
||||
// Build the local datastructure graph for a single method.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "FunctionRepBuilder.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/iPHINode.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "llvm/iTerminators.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
|
||||
// synthesizeNode - Create a new shadow node that is to be linked into this
|
||||
// chain..
|
||||
// FIXME: This should not take a FunctionRepBuilder as an argument!
|
||||
//
|
||||
ShadowDSNode *ShadowDSNode::synthesizeNode(const Type *Ty,
|
||||
FunctionRepBuilder *Rep) {
|
||||
// If we are a derived shadow node, defer to our parent to synthesize the node
|
||||
if (ShadowParent) return ShadowParent->synthesizeNode(Ty, Rep);
|
||||
|
||||
// See if we have already synthesized a node of this type...
|
||||
for (unsigned i = 0, e = SynthNodes.size(); i != e; ++i)
|
||||
if (SynthNodes[i].first == Ty) return SynthNodes[i].second;
|
||||
|
||||
// No we haven't. Do so now and add it to our list of saved nodes...
|
||||
ShadowDSNode *SN = new ShadowDSNode(Ty, Mod, this);
|
||||
SynthNodes.push_back(make_pair(Ty, SN));
|
||||
Rep->addShadowNode(SN);
|
||||
return SN;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// visitOperand - If the specified instruction operand is a global value, add
|
||||
// a node for it...
|
||||
//
|
||||
void InitVisitor::visitOperand(Value *V) {
|
||||
if (!Rep->ValueMap.count(V)) // Only process it once...
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
||||
GlobalDSNode *N = new GlobalDSNode(GV);
|
||||
Rep->Nodes.push_back(N);
|
||||
Rep->ValueMap[V].add(N);
|
||||
Rep->addAllUsesToWorkList(GV);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// visitCallInst - Create a call node for the callinst, and create as shadow
|
||||
// node if the call returns a pointer value. Check to see if the call node
|
||||
// uses any global variables...
|
||||
//
|
||||
void InitVisitor::visitCallInst(CallInst *CI) {
|
||||
CallDSNode *C = new CallDSNode(CI);
|
||||
Rep->Nodes.push_back(C);
|
||||
Rep->CallMap[CI] = C;
|
||||
|
||||
if (isa<PointerType>(CI->getType())) {
|
||||
// Create a shadow node to represent the memory object that the return
|
||||
// value points to...
|
||||
ShadowDSNode *Shad = new ShadowDSNode(C, Func->getParent());
|
||||
Rep->ShadowNodes.push_back(Shad);
|
||||
|
||||
// The return value of the function is a pointer to the shadow value
|
||||
// just created...
|
||||
//
|
||||
C->getLink(0).add(Shad);
|
||||
|
||||
// The call instruction returns a pointer to the shadow block...
|
||||
Rep->ValueMap[CI].add(Shad, CI);
|
||||
|
||||
// If the call returns a value with pointer type, add all of the users
|
||||
// of the call instruction to the work list...
|
||||
Rep->addAllUsesToWorkList(CI);
|
||||
}
|
||||
|
||||
// Loop over all of the operands of the call instruction (except the first
|
||||
// one), to look for global variable references...
|
||||
//
|
||||
for_each(CI->op_begin()+1, CI->op_end(), // Skip first arg
|
||||
bind_obj(this, &InitVisitor::visitOperand));
|
||||
}
|
||||
|
||||
|
||||
// visitAllocationInst - Create an allocation node for the allocation. Since
|
||||
// allocation instructions do not take pointer arguments, they cannot refer to
|
||||
// global vars...
|
||||
//
|
||||
void InitVisitor::visitAllocationInst(AllocationInst *AI) {
|
||||
NewDSNode *N = new NewDSNode(AI);
|
||||
Rep->Nodes.push_back(N);
|
||||
|
||||
Rep->ValueMap[AI].add(N, AI);
|
||||
|
||||
// Add all of the users of the malloc instruction to the work list...
|
||||
Rep->addAllUsesToWorkList(AI);
|
||||
}
|
||||
|
||||
|
||||
// Visit all other instruction types. Here we just scan, looking for uses of
|
||||
// global variables...
|
||||
//
|
||||
void InitVisitor::visitInstruction(Instruction *I) {
|
||||
for_each(I->op_begin(), I->op_end(),
|
||||
bind_obj(this, &InitVisitor::visitOperand));
|
||||
}
|
||||
|
||||
|
||||
// addAllUsesToWorkList - Add all of the instructions users of the specified
|
||||
// value to the work list for further processing...
|
||||
//
|
||||
void FunctionRepBuilder::addAllUsesToWorkList(Value *V) {
|
||||
//cerr << "Adding all uses of " << V << "\n";
|
||||
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
|
||||
Instruction *Inst = cast<Instruction>(*I);
|
||||
// When processing global values, it's possible that the instructions on
|
||||
// the use list are not all in this method. Only add the instructions
|
||||
// that _are_ in this method.
|
||||
//
|
||||
if (Inst->getParent()->getParent() == F->getFunction())
|
||||
// Only let an instruction occur on the work list once...
|
||||
if (std::find(WorkList.begin(), WorkList.end(), Inst) == WorkList.end())
|
||||
WorkList.push_back(Inst);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void FunctionRepBuilder::initializeWorkList(Function *Func) {
|
||||
// Add all of the arguments to the method to the graph and add all users to
|
||||
// the worklists...
|
||||
//
|
||||
for (Function::ArgumentListType::iterator I = Func->getArgumentList().begin(),
|
||||
E = Func->getArgumentList().end(); I != E; ++I)
|
||||
// Only process arguments that are of pointer type...
|
||||
if (isa<PointerType>((*I)->getType())) {
|
||||
ArgDSNode *Arg = new ArgDSNode(*I);
|
||||
Nodes.push_back(Arg);
|
||||
|
||||
// Add a shadow value for it to represent what it is pointing
|
||||
// to and add this to the value map...
|
||||
ShadowDSNode *Shad = new ShadowDSNode(Arg, Func->getParent());
|
||||
ShadowNodes.push_back(Shad);
|
||||
ValueMap[*I].add(PointerVal(Shad), *I);
|
||||
|
||||
// The value of the argument is the shadow value...
|
||||
Arg->getLink(0).add(Shad);
|
||||
|
||||
// Make sure that all users of the argument are processed...
|
||||
addAllUsesToWorkList(*I);
|
||||
}
|
||||
|
||||
// Iterate over the instructions in the method. Create nodes for malloc and
|
||||
// call instructions. Add all uses of these to the worklist of instructions
|
||||
// to process.
|
||||
//
|
||||
InitVisitor IV(this, Func);
|
||||
IV.visit(Func);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
PointerVal FunctionRepBuilder::getIndexedPointerDest(const PointerVal &InP,
|
||||
const MemAccessInst *MAI) {
|
||||
unsigned Index = InP.Index;
|
||||
const Type *SrcTy = MAI->getPointerOperand()->getType();
|
||||
|
||||
for (MemAccessInst::const_op_iterator I = MAI->idx_begin(),
|
||||
E = MAI->idx_end(); I != E; ++I)
|
||||
if ((*I)->getType() == Type::UByteTy) { // Look for struct indices...
|
||||
StructType *STy = cast<StructType>(SrcTy);
|
||||
unsigned StructIdx = cast<ConstantUInt>(*I)->getValue();
|
||||
for (unsigned i = 0; i != StructIdx; ++i)
|
||||
Index += countPointerFields(STy->getContainedType(i));
|
||||
|
||||
// Advance SrcTy to be the new element type...
|
||||
SrcTy = STy->getContainedType(StructIdx);
|
||||
} else {
|
||||
// Otherwise, stepping into array or initial pointer, just increment type
|
||||
SrcTy = cast<SequentialType>(SrcTy)->getElementType();
|
||||
}
|
||||
|
||||
return PointerVal(InP.Node, Index);
|
||||
}
|
||||
|
||||
static PointerValSet &getField(const PointerVal &DestPtr) {
|
||||
assert(DestPtr.Node != 0);
|
||||
|
||||
return DestPtr.Node->getLink(DestPtr.Index);
|
||||
}
|
||||
|
||||
|
||||
// Reprocessing a GEP instruction is the result of the pointer operand
|
||||
// changing. This means that the set of possible values for the GEP
|
||||
// needs to be expanded.
|
||||
//
|
||||
void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst *GEP) {
|
||||
PointerValSet &GEPPVS = ValueMap[GEP]; // PointerValSet to expand
|
||||
|
||||
// Get the input pointer val set...
|
||||
const PointerValSet &SrcPVS = ValueMap[GEP->getOperand(0)];
|
||||
|
||||
bool Changed = false; // Process each input value... propogating it.
|
||||
for (unsigned i = 0, e = SrcPVS.size(); i != e; ++i) {
|
||||
// Calculate where the resulting pointer would point based on an
|
||||
// input of 'Val' as the pointer type... and add it to our outgoing
|
||||
// value set. Keep track of whether or not we actually changed
|
||||
// anything.
|
||||
//
|
||||
Changed |= GEPPVS.add(getIndexedPointerDest(SrcPVS[i], GEP));
|
||||
}
|
||||
|
||||
// If our current value set changed, notify all of the users of our
|
||||
// value.
|
||||
//
|
||||
if (Changed) addAllUsesToWorkList(GEP);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitReturnInst(ReturnInst *RI) {
|
||||
RetNode.add(ValueMap[RI->getOperand(0)]);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitLoadInst(LoadInst *LI) {
|
||||
// Only loads that return pointers are interesting...
|
||||
if (!isa<PointerType>(LI->getType())) return;
|
||||
const PointerType *DestTy = cast<PointerType>(LI->getType());
|
||||
|
||||
const PointerValSet &SrcPVS = ValueMap[LI->getOperand(0)];
|
||||
PointerValSet &LIPVS = ValueMap[LI];
|
||||
|
||||
bool Changed = false;
|
||||
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
|
||||
PointerVal Ptr = getIndexedPointerDest(SrcPVS[si], LI);
|
||||
PointerValSet &Field = getField(Ptr);
|
||||
|
||||
if (Field.size()) { // Field loaded wasn't null?
|
||||
Changed |= LIPVS.add(Field);
|
||||
} else if (Ptr.Node->NodeType == DSNode::ShadowNode) {
|
||||
// If we are loading a null field out of a shadow node, we need to
|
||||
// synthesize a new shadow node and link it in...
|
||||
//
|
||||
ShadowDSNode *Shad = (ShadowDSNode*)Ptr.Node;
|
||||
ShadowDSNode *SynthNode =
|
||||
Shad->synthesizeNode(DestTy->getElementType(), this);
|
||||
Field.add(SynthNode);
|
||||
|
||||
Changed |= LIPVS.add(Field);
|
||||
}
|
||||
}
|
||||
|
||||
if (Changed) addAllUsesToWorkList(LI);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitStoreInst(StoreInst *SI) {
|
||||
// The only stores that are interesting are stores the store pointers
|
||||
// into data structures...
|
||||
//
|
||||
if (!isa<PointerType>(SI->getOperand(0)->getType())) return;
|
||||
|
||||
const PointerValSet &SrcPVS = ValueMap[SI->getOperand(0)];
|
||||
const PointerValSet &PtrPVS = ValueMap[SI->getOperand(1)];
|
||||
|
||||
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
|
||||
const PointerVal &SrcPtr = SrcPVS[si];
|
||||
for (unsigned pi = 0, pe = PtrPVS.size(); pi != pe; ++pi) {
|
||||
PointerVal Dest = getIndexedPointerDest(PtrPVS[pi], SI);
|
||||
|
||||
#if 0
|
||||
cerr << "Setting Dest:\n";
|
||||
Dest.print(cerr);
|
||||
cerr << "to point to Src:\n";
|
||||
SrcPtr.print(cerr);
|
||||
#endif
|
||||
|
||||
// Add SrcPtr into the Dest field...
|
||||
if (getField(Dest).add(SrcPtr)) {
|
||||
// If we modified the dest field, then invalidate everyone that points
|
||||
// to Dest.
|
||||
const std::vector<Value*> &Ptrs = Dest.Node->getPointers();
|
||||
for (unsigned i = 0, e = Ptrs.size(); i != e; ++i)
|
||||
addAllUsesToWorkList(Ptrs[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitCallInst(CallInst *CI) {
|
||||
CallDSNode *DSN = CallMap[CI];
|
||||
|
||||
unsigned PtrNum = 0, i = 0;
|
||||
if (isa<Function>(CI->getOperand(0)))
|
||||
++i; // Not an Indirect function call? Skip the function pointer...
|
||||
|
||||
for (unsigned e = CI->getNumOperands(); i != e; ++i)
|
||||
if (isa<PointerType>(CI->getOperand(i)->getType()))
|
||||
DSN->addArgValue(PtrNum++, ValueMap[CI->getOperand(i)]);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitPHINode(PHINode *PN) {
|
||||
assert(isa<PointerType>(PN->getType()) && "Should only update ptr phis");
|
||||
|
||||
PointerValSet &PN_PVS = ValueMap[PN];
|
||||
bool Changed = false;
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
||||
Changed |= PN_PVS.add(ValueMap[PN->getIncomingValue(i)],
|
||||
PN->getIncomingValue(i));
|
||||
|
||||
if (Changed) addAllUsesToWorkList(PN);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// FunctionDSGraph constructor - Perform the global analysis to determine
|
||||
// what the data structure usage behavior or a method looks like.
|
||||
//
|
||||
FunctionDSGraph::FunctionDSGraph(Function *F) : Func(F) {
|
||||
FunctionRepBuilder Builder(this);
|
||||
Nodes = Builder.getNodes();
|
||||
ShadowNodes = Builder.getShadowNodes();
|
||||
RetNode = Builder.getRetNode();
|
||||
ValueMap = Builder.getValueMap();
|
||||
}
|
||||
|
130
lib/Analysis/DataStructure/FunctionRepBuilder.h
Normal file
130
lib/Analysis/DataStructure/FunctionRepBuilder.h
Normal file
@ -0,0 +1,130 @@
|
||||
//===- FunctionRepBuilder.h - Structures for graph building ------*- C++ -*--=//
|
||||
//
|
||||
// This file defines the FunctionRepBuilder and InitVisitor classes that are
|
||||
// used to build the local data structure graph for a method.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef DATA_STRUCTURE_METHOD_REP_BUILDER_H
|
||||
#define DATA_STRUCTURE_METHOD_REP_BUILDER_H
|
||||
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Support/InstVisitor.h"
|
||||
|
||||
// DEBUG_DATA_STRUCTURE_CONSTRUCTION - Define this to 1 if you want debug output
|
||||
#define DEBUG_DATA_STRUCTURE_CONSTRUCTION 0
|
||||
|
||||
class FunctionRepBuilder;
|
||||
|
||||
// InitVisitor - Used to initialize the worklists for data structure analysis.
|
||||
// Iterate over the instructions in the method, creating nodes for malloc and
|
||||
// call instructions. Add all uses of these to the worklist of instructions
|
||||
// to process.
|
||||
//
|
||||
class InitVisitor : public InstVisitor<InitVisitor> {
|
||||
FunctionRepBuilder *Rep;
|
||||
Function *Func;
|
||||
public:
|
||||
InitVisitor(FunctionRepBuilder *R, Function *F) : Rep(R), Func(F) {}
|
||||
|
||||
void visitCallInst(CallInst *CI);
|
||||
void visitAllocationInst(AllocationInst *AI);
|
||||
void visitInstruction(Instruction *I);
|
||||
|
||||
// visitOperand - If the specified instruction operand is a global value, add
|
||||
// a node for it...
|
||||
//
|
||||
void visitOperand(Value *V);
|
||||
};
|
||||
|
||||
|
||||
// FunctionRepBuilder - This builder object creates the datastructure graph for
|
||||
// a method.
|
||||
//
|
||||
class FunctionRepBuilder : InstVisitor<FunctionRepBuilder> {
|
||||
friend class InitVisitor;
|
||||
FunctionDSGraph *F;
|
||||
PointerValSet RetNode;
|
||||
|
||||
// ValueMap - Mapping between values we are processing and the possible
|
||||
// datastructures that they may point to...
|
||||
map<Value*, PointerValSet> ValueMap;
|
||||
|
||||
// CallMap - Keep track of which call nodes correspond to which call insns.
|
||||
// The reverse mapping is stored in the CallDSNodes themselves.
|
||||
//
|
||||
map<CallInst*, CallDSNode*> CallMap;
|
||||
|
||||
// Worklist - Vector of (pointer typed) instructions to process still...
|
||||
std::vector<Instruction *> WorkList;
|
||||
|
||||
// Nodes - Keep track of all of the resultant nodes, because there may not
|
||||
// be edges connecting these to anything.
|
||||
//
|
||||
std::vector<DSNode*> Nodes;
|
||||
std::vector<ShadowDSNode*> ShadowNodes;
|
||||
|
||||
// addAllUsesToWorkList - Add all of the instructions users of the specified
|
||||
// value to the work list for further processing...
|
||||
//
|
||||
void addAllUsesToWorkList(Value *V);
|
||||
|
||||
public:
|
||||
FunctionRepBuilder(FunctionDSGraph *f) : F(f) {
|
||||
initializeWorkList(F->getFunction());
|
||||
processWorkList();
|
||||
}
|
||||
|
||||
void addNode(DSNode *N) { Nodes.push_back(N); }
|
||||
const std::vector<DSNode*> &getNodes() const { return Nodes; }
|
||||
|
||||
void addShadowNode(ShadowDSNode *N) { ShadowNodes.push_back(N); }
|
||||
const std::vector<ShadowDSNode*> &getShadowNodes() const {return ShadowNodes;}
|
||||
|
||||
const PointerValSet &getRetNode() const { return RetNode; }
|
||||
|
||||
const map<Value*, PointerValSet> &getValueMap() const { return ValueMap; }
|
||||
private:
|
||||
static PointerVal getIndexedPointerDest(const PointerVal &InP,
|
||||
const MemAccessInst *MAI);
|
||||
|
||||
void initializeWorkList(Function *Func);
|
||||
void processWorkList() {
|
||||
// While the worklist still has instructions to process, process them!
|
||||
while (!WorkList.empty()) {
|
||||
Instruction *I = WorkList.back(); WorkList.pop_back();
|
||||
#if DEBUG_DATA_STRUCTURE_CONSTRUCTION
|
||||
cerr << "Processing worklist inst: " << I;
|
||||
#endif
|
||||
|
||||
visit(I); // Dispatch to a visitXXX function based on instruction type...
|
||||
#if DEBUG_DATA_STRUCTURE_CONSTRUCTION
|
||||
if (I->hasName() && ValueMap.count(I)) {
|
||||
cerr << "Inst %" << I->getName() << " value is:\n";
|
||||
ValueMap[I].print(cerr);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Functions used to process the worklist of instructions...
|
||||
//
|
||||
// Allow the visitor base class to invoke these methods...
|
||||
friend class InstVisitor<FunctionRepBuilder>;
|
||||
|
||||
void visitGetElementPtrInst(GetElementPtrInst *GEP);
|
||||
void visitReturnInst(ReturnInst *RI);
|
||||
void visitLoadInst(LoadInst *LI);
|
||||
void visitStoreInst(StoreInst *SI);
|
||||
void visitCallInst(CallInst *CI);
|
||||
void visitPHINode(PHINode *PN);
|
||||
void visitSetCondInst(SetCondInst *SCI) {} // SetEQ & friends are ignored
|
||||
void visitFreeInst(FreeInst *FI) {} // Ignore free instructions
|
||||
void visitInstruction(Instruction *I) {
|
||||
std::cerr << "\n\n\nUNKNOWN INSTRUCTION type: " << I << "\n\n\n";
|
||||
assert(0 && "Cannot proceed");
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
7
lib/Analysis/DataStructure/Makefile
Normal file
7
lib/Analysis/DataStructure/Makefile
Normal file
@ -0,0 +1,7 @@
|
||||
|
||||
LEVEL = ../../..
|
||||
|
||||
LIBRARYNAME = datastructure
|
||||
|
||||
include $(LEVEL)/Makefile.common
|
||||
|
352
lib/Analysis/DataStructure/NodeImpl.cpp
Normal file
352
lib/Analysis/DataStructure/NodeImpl.cpp
Normal file
@ -0,0 +1,352 @@
|
||||
//===- NodeImpl.cpp - Implement the data structure analysis nodes ---------===//
|
||||
//
|
||||
// Implement the LLVM data structure analysis library.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "llvm/Assembly/Writer.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DSNode Class Implementation
|
||||
//
|
||||
|
||||
static void MapPVS(PointerValSet &PVSOut, const PointerValSet &PVSIn,
|
||||
map<const DSNode*, DSNode*> &NodeMap) {
|
||||
assert(PVSOut.empty() && "Value set already initialized!");
|
||||
|
||||
for (unsigned i = 0, e = PVSIn.size(); i != e; ++i)
|
||||
PVSOut.add(PointerVal(NodeMap[PVSIn[i].Node], PVSIn[i].Index));
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned countPointerFields(const Type *Ty) {
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
case Type::StructTyID: {
|
||||
const StructType *ST = cast<StructType>(Ty);
|
||||
unsigned Sum = 0;
|
||||
for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i)
|
||||
Sum += countPointerFields(ST->getContainedType(i));
|
||||
|
||||
return Sum;
|
||||
}
|
||||
|
||||
case Type::ArrayTyID:
|
||||
// All array elements are folded together...
|
||||
return countPointerFields(cast<ArrayType>(Ty)->getElementType());
|
||||
|
||||
case Type::PointerTyID:
|
||||
return 1;
|
||||
|
||||
default: // Some other type, just treat it like a scalar
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) {
|
||||
// Create field entries for all of the values in this type...
|
||||
FieldLinks.resize(countPointerFields(getType()));
|
||||
}
|
||||
|
||||
void DSNode::removeReferrer(PointerValSet *PVS) {
|
||||
vector<PointerValSet*>::iterator I = std::find(Referrers.begin(),
|
||||
Referrers.end(), PVS);
|
||||
assert(I != Referrers.end() && "PVS not pointing to node!");
|
||||
Referrers.erase(I);
|
||||
}
|
||||
|
||||
|
||||
static void replaceIn(std::string &S, char From, const std::string &To) {
|
||||
for (unsigned i = 0; i < S.size(); )
|
||||
if (S[i] == From) {
|
||||
S.replace(S.begin()+i, S.begin()+i+1,
|
||||
To.begin(), To.end());
|
||||
i += To.size();
|
||||
} else {
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
static void writeEdges(std::ostream &O, const void *SrcNode,
|
||||
const char *SrcNodePortName, int SrcNodeIdx,
|
||||
const PointerValSet &VS, const string &EdgeAttr = "") {
|
||||
for (unsigned j = 0, je = VS.size(); j != je; ++j) {
|
||||
O << "\t\tNode" << SrcNode << SrcNodePortName;
|
||||
if (SrcNodeIdx != -1) O << SrcNodeIdx;
|
||||
|
||||
O << " -> Node" << VS[j].Node;
|
||||
if (VS[j].Index)
|
||||
O << ":g" << VS[j].Index;
|
||||
|
||||
if (!EdgeAttr.empty())
|
||||
O << "[" << EdgeAttr << "]";
|
||||
O << ";\n";
|
||||
}
|
||||
}
|
||||
|
||||
static string escapeLabel(const string &In) {
|
||||
string Label(In);
|
||||
replaceIn(Label, '\\', "\\\\\\\\"); // Escape caption...
|
||||
replaceIn(Label, ' ', "\\ ");
|
||||
replaceIn(Label, '{', "\\{");
|
||||
replaceIn(Label, '}', "\\}");
|
||||
return Label;
|
||||
}
|
||||
|
||||
void DSNode::print(std::ostream &O) const {
|
||||
string Caption = escapeLabel(getCaption());
|
||||
|
||||
O << "\t\tNode" << (void*)this << " [ label =\"{" << Caption;
|
||||
|
||||
const vector<PointerValSet> *Links = getAuxLinks();
|
||||
if (Links && !Links->empty()) {
|
||||
O << "|{";
|
||||
for (unsigned i = 0; i < Links->size(); ++i) {
|
||||
if (i) O << "|";
|
||||
O << "<f" << i << ">";
|
||||
}
|
||||
O << "}";
|
||||
}
|
||||
|
||||
if (!FieldLinks.empty()) {
|
||||
O << "|{";
|
||||
for (unsigned i = 0; i < FieldLinks.size(); ++i) {
|
||||
if (i) O << "|";
|
||||
O << "<g" << i << ">";
|
||||
}
|
||||
O << "}";
|
||||
}
|
||||
O << "}\"];\n";
|
||||
|
||||
if (Links)
|
||||
for (unsigned i = 0; i < Links->size(); ++i)
|
||||
writeEdges(O, this, ":f", i, (*Links)[i]);
|
||||
for (unsigned i = 0; i < FieldLinks.size(); ++i)
|
||||
writeEdges(O, this, ":g", i, FieldLinks[i]);
|
||||
}
|
||||
|
||||
void DSNode::mapNode(map<const DSNode*, DSNode*> &NodeMap, const DSNode *Old) {
|
||||
assert(FieldLinks.size() == Old->FieldLinks.size() &&
|
||||
"Cloned nodes do not have the same number of links!");
|
||||
for (unsigned j = 0, je = FieldLinks.size(); j != je; ++j)
|
||||
MapPVS(FieldLinks[j], Old->FieldLinks[j], NodeMap);
|
||||
}
|
||||
|
||||
NewDSNode::NewDSNode(AllocationInst *V)
|
||||
: DSNode(NewNode, V->getType()->getElementType()), Allocation(V) {
|
||||
}
|
||||
|
||||
string NewDSNode::getCaption() const {
|
||||
stringstream OS;
|
||||
if (isa<MallocInst>(Allocation))
|
||||
OS << "new ";
|
||||
else
|
||||
OS << "alloca ";
|
||||
|
||||
WriteTypeSymbolic(OS, getType(),
|
||||
Allocation->getParent()->getParent()->getParent());
|
||||
if (Allocation->isArrayAllocation())
|
||||
OS << "[ ]";
|
||||
return OS.str();
|
||||
}
|
||||
|
||||
GlobalDSNode::GlobalDSNode(GlobalValue *V)
|
||||
: DSNode(GlobalNode, V->getType()->getElementType()), Val(V) {
|
||||
}
|
||||
|
||||
string GlobalDSNode::getCaption() const {
|
||||
stringstream OS;
|
||||
WriteTypeSymbolic(OS, getType(), Val->getParent());
|
||||
return "global " + OS.str();
|
||||
}
|
||||
|
||||
|
||||
ShadowDSNode::ShadowDSNode(DSNode *P, Module *M)
|
||||
: DSNode(ShadowNode, cast<PointerType>(P->getType())->getElementType()) {
|
||||
Parent = P;
|
||||
Mod = M;
|
||||
ShadowParent = 0;
|
||||
}
|
||||
|
||||
ShadowDSNode::ShadowDSNode(const Type *Ty, Module *M, ShadowDSNode *ShadParent)
|
||||
: DSNode(ShadowNode, Ty) {
|
||||
Parent = 0;
|
||||
Mod = M;
|
||||
ShadowParent = ShadParent;
|
||||
}
|
||||
|
||||
std::string ShadowDSNode::getCaption() const {
|
||||
stringstream OS;
|
||||
WriteTypeSymbolic(OS, getType(), Mod);
|
||||
return "shadow " + OS.str();
|
||||
}
|
||||
|
||||
void ShadowDSNode::mapNode(map<const DSNode*, DSNode*> &NodeMap,
|
||||
const DSNode *O) {
|
||||
const ShadowDSNode *Old = (ShadowDSNode*)O;
|
||||
DSNode::mapNode(NodeMap, Old); // Map base portions first...
|
||||
|
||||
// Map our SynthNodes...
|
||||
assert(SynthNodes.empty() && "Synthnodes already mapped?");
|
||||
SynthNodes.reserve(Old->SynthNodes.size());
|
||||
for (unsigned i = 0, e = Old->SynthNodes.size(); i != e; ++i)
|
||||
SynthNodes.push_back(std::make_pair(Old->SynthNodes[i].first,
|
||||
(ShadowDSNode*)NodeMap[Old->SynthNodes[i].second]));
|
||||
}
|
||||
|
||||
|
||||
CallDSNode::CallDSNode(CallInst *ci) : DSNode(CallNode, ci->getType()), CI(ci) {
|
||||
unsigned NumPtrs = 0;
|
||||
if (!isa<Function>(ci->getOperand(0)))
|
||||
NumPtrs++; // Include the method pointer...
|
||||
|
||||
for (unsigned i = 1, e = ci->getNumOperands(); i != e; ++i)
|
||||
if (isa<PointerType>(ci->getOperand(i)->getType()))
|
||||
NumPtrs++;
|
||||
ArgLinks.resize(NumPtrs);
|
||||
}
|
||||
|
||||
string CallDSNode::getCaption() const {
|
||||
stringstream OS;
|
||||
if (const Function *CM = CI->getCalledFunction())
|
||||
OS << "call " << CM->getName();
|
||||
else
|
||||
OS << "call <indirect>";
|
||||
OS << "|Ret: ";
|
||||
WriteTypeSymbolic(OS, getType(),
|
||||
CI->getParent()->getParent()->getParent());
|
||||
return OS.str();
|
||||
}
|
||||
|
||||
void CallDSNode::mapNode(map<const DSNode*, DSNode*> &NodeMap,
|
||||
const DSNode *O) {
|
||||
const CallDSNode *Old = (CallDSNode*)O;
|
||||
DSNode::mapNode(NodeMap, Old); // Map base portions first...
|
||||
|
||||
assert(ArgLinks.size() == Old->ArgLinks.size() && "# Arguments changed!?");
|
||||
for (unsigned i = 0, e = Old->ArgLinks.size(); i != e; ++i)
|
||||
MapPVS(ArgLinks[i], Old->ArgLinks[i], NodeMap);
|
||||
}
|
||||
|
||||
ArgDSNode::ArgDSNode(FunctionArgument *FA)
|
||||
: DSNode(ArgNode, FA->getType()), FuncArg(FA) {
|
||||
}
|
||||
|
||||
string ArgDSNode::getCaption() const {
|
||||
stringstream OS;
|
||||
OS << "arg %" << FuncArg->getName() << "|Ty: ";
|
||||
WriteTypeSymbolic(OS, getType(), FuncArg->getParent()->getParent());
|
||||
return OS.str();
|
||||
}
|
||||
|
||||
void FunctionDSGraph::printFunction(std::ostream &O,
|
||||
const char *Label) const {
|
||||
O << "\tsubgraph cluster_" << Label << "_Function" << (void*)this << " {\n";
|
||||
O << "\t\tlabel=\"" << Label << " Function\\ " << Func->getName() << "\";\n";
|
||||
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
|
||||
Nodes[i]->print(O);
|
||||
for (unsigned i = 0, e = ShadowNodes.size(); i != e; ++i)
|
||||
ShadowNodes[i]->print(O);
|
||||
|
||||
if (RetNode.size()) {
|
||||
O << "\t\tNode" << (void*)this << Label
|
||||
<< " [shape=\"ellipse\", label=\"Returns\"];\n";
|
||||
writeEdges(O, this, Label, -1, RetNode);
|
||||
}
|
||||
|
||||
O << "\n";
|
||||
for (std::map<Value*, PointerValSet>::const_iterator I = ValueMap.begin(),
|
||||
E = ValueMap.end(); I != E; ++I) {
|
||||
if (I->second.size()) { // Only output nodes with edges...
|
||||
stringstream OS;
|
||||
WriteTypeSymbolic(OS, I->first->getType(), Func->getParent());
|
||||
|
||||
// Create node for I->first
|
||||
O << "\t\tNode" << (void*)I->first << Label << " [shape=\"box\", label=\""
|
||||
<< escapeLabel(OS.str()) << "\\n%" << escapeLabel(I->first->getName())
|
||||
<< "\",fontsize=\"12.0\",color=\"gray70\"];\n";
|
||||
|
||||
// add edges from I->first to all pointers in I->second
|
||||
writeEdges(O, I->first, Label, -1, I->second,
|
||||
"weight=\"0.9\",color=\"gray70\"");
|
||||
}
|
||||
}
|
||||
|
||||
O << "\t}\n";
|
||||
}
|
||||
|
||||
// Copy constructor - Since we copy the nodes over, we have to be sure to go
|
||||
// through and fix pointers to point into the new graph instead of into the old
|
||||
// graph...
|
||||
//
|
||||
FunctionDSGraph::FunctionDSGraph(const FunctionDSGraph &DSG) : Func(DSG.Func) {
|
||||
RetNode = cloneFunctionIntoSelf(DSG, true);
|
||||
}
|
||||
|
||||
|
||||
// cloneFunctionIntoSelf - Clone the specified method graph into the current
|
||||
// method graph, returning the Return's set of the graph. If ValueMap is set
|
||||
// to true, the ValueMap of the function is cloned into this function as well
|
||||
// as the data structure graph itself.
|
||||
//
|
||||
PointerValSet FunctionDSGraph::cloneFunctionIntoSelf(const FunctionDSGraph &DSG,
|
||||
bool CloneValueMap) {
|
||||
map<const DSNode*, DSNode*> NodeMap; // Map from old graph to new graph...
|
||||
unsigned StartSize = Nodes.size(); // We probably already have nodes...
|
||||
Nodes.reserve(StartSize+DSG.Nodes.size());
|
||||
unsigned StartShadowSize = ShadowNodes.size();
|
||||
ShadowNodes.reserve(StartShadowSize+DSG.ShadowNodes.size());
|
||||
|
||||
// Clone all of the nodes, keeping track of the mapping...
|
||||
for (unsigned i = 0, e = DSG.Nodes.size(); i != e; ++i)
|
||||
Nodes.push_back(NodeMap[DSG.Nodes[i]] = DSG.Nodes[i]->clone());
|
||||
|
||||
// Clone all of the shadow nodes similarly...
|
||||
for (unsigned i = 0, e = DSG.ShadowNodes.size(); i != e; ++i)
|
||||
ShadowNodes.push_back(cast<ShadowDSNode>(NodeMap[DSG.ShadowNodes[i]] = DSG.ShadowNodes[i]->clone()));
|
||||
|
||||
|
||||
// Convert all of the links over in the nodes now that the map has been filled
|
||||
// in all the way...
|
||||
//
|
||||
for (unsigned i = 0, e = DSG.Nodes.size(); i != e; ++i)
|
||||
Nodes[i+StartSize]->mapNode(NodeMap, DSG.Nodes[i]);
|
||||
|
||||
for (unsigned i = 0, e = DSG.ShadowNodes.size(); i != e; ++i)
|
||||
ShadowNodes[i+StartShadowSize]->mapNode(NodeMap, DSG.ShadowNodes[i]);
|
||||
|
||||
if (CloneValueMap) {
|
||||
// Convert value map... the values themselves stay the same, just the nodes
|
||||
// have to change...
|
||||
//
|
||||
for (std::map<Value*,PointerValSet>::const_iterator I =DSG.ValueMap.begin(),
|
||||
E = DSG.ValueMap.end(); I != E; ++I)
|
||||
MapPVS(ValueMap[I->first], I->second, NodeMap);
|
||||
}
|
||||
|
||||
// Convert over return node...
|
||||
PointerValSet RetVals;
|
||||
MapPVS(RetVals, DSG.RetNode, NodeMap);
|
||||
return RetVals;
|
||||
}
|
||||
|
||||
|
||||
FunctionDSGraph::~FunctionDSGraph() {
|
||||
RetNode.clear();
|
||||
ValueMap.clear();
|
||||
for_each(Nodes.begin(), Nodes.end(), mem_fun(&DSNode::dropAllReferences));
|
||||
for_each(ShadowNodes.begin(), ShadowNodes.end(),
|
||||
mem_fun(&DSNode::dropAllReferences));
|
||||
for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
|
||||
for_each(ShadowNodes.begin(), ShadowNodes.end(), deleter<DSNode>);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user