mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-25 20:59:51 +00:00
Initial checkin of new LLI with JIT compiler
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5126 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
fe11a97fcd
commit
bd199fb114
86
include/llvm/ExecutionEngine/ExecutionEngine.h
Normal file
86
include/llvm/ExecutionEngine/ExecutionEngine.h
Normal file
@ -0,0 +1,86 @@
|
||||
//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
|
||||
//
|
||||
// This file defines the abstract interface that implements execution support
|
||||
// for LLVM.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef EXECUTION_ENGINE_H
|
||||
#define EXECUTION_ENGINE_H
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <map>
|
||||
class Constant;
|
||||
class Type;
|
||||
class GlobalValue;
|
||||
class Function;
|
||||
class Module;
|
||||
class TargetData;
|
||||
union GenericValue;
|
||||
|
||||
class ExecutionEngine {
|
||||
Module &CurMod;
|
||||
const TargetData *TD;
|
||||
|
||||
protected:
|
||||
// GlobalAddress - A mapping between LLVM global values and their actualized
|
||||
// version...
|
||||
std::map<const GlobalValue*, void *> GlobalAddress;
|
||||
|
||||
void setTargetData(const TargetData &td) {
|
||||
TD = &td;
|
||||
emitGlobals();
|
||||
}
|
||||
public:
|
||||
ExecutionEngine(Module *M) : CurMod(*M) {
|
||||
assert(M && "Module is null?");
|
||||
}
|
||||
virtual ~ExecutionEngine();
|
||||
|
||||
Module &getModule() const { return CurMod; }
|
||||
const TargetData &getTargetData() const { return *TD; }
|
||||
|
||||
/// run - Start execution with the specified function and arguments.
|
||||
///
|
||||
virtual int run(const std::string &FnName,
|
||||
const std::vector<std::string> &Args) = 0;
|
||||
|
||||
/// createJIT - Create an return a new JIT compiler if there is one available
|
||||
/// for the current target. Otherwise it returns null.
|
||||
///
|
||||
static ExecutionEngine *createJIT(Module *M, unsigned Config);
|
||||
|
||||
/// createInterpreter - Create a new interpreter object. This can never fail.
|
||||
///
|
||||
static ExecutionEngine *createInterpreter(Module *M, unsigned Config,
|
||||
bool DebugMode, bool TraceMode);
|
||||
|
||||
void addGlobalMapping(const Function *F, void *Addr) {
|
||||
void *&CurVal = GlobalAddress[(const GlobalValue*)F];
|
||||
assert(CurVal == 0 && "GlobalMapping already established!");
|
||||
CurVal = Addr;
|
||||
}
|
||||
|
||||
// getPointerToGlobal - This returns the address of the specified global
|
||||
// value. This may involve code generation if it's a function.
|
||||
//
|
||||
void *getPointerToGlobal(const GlobalValue *GV);
|
||||
|
||||
// getPointerToFunction - The different EE's represent function bodies in
|
||||
// different ways. They should each implement this to say what a function
|
||||
// pointer should look like.
|
||||
//
|
||||
virtual void *getPointerToFunction(const Function *F) = 0;
|
||||
|
||||
private:
|
||||
void emitGlobals();
|
||||
|
||||
public: // FIXME: protected: // API shared among subclasses
|
||||
GenericValue getConstantValue(const Constant *C);
|
||||
void StoreValueToMemory(GenericValue Val, GenericValue *Ptr, const Type *Ty);
|
||||
void *CreateArgv(const std::vector<std::string> &InputArgv);
|
||||
void InitializeMemory(const Constant *Init, void *Addr);
|
||||
};
|
||||
|
||||
#endif
|
40
include/llvm/ExecutionEngine/GenericValue.h
Normal file
40
include/llvm/ExecutionEngine/GenericValue.h
Normal file
@ -0,0 +1,40 @@
|
||||
//===-- GenericValue.h - Represent any type of LLVM value -------*- C++ -*-===//
|
||||
//
|
||||
// The GenericValue class is used to represent an LLVM value of arbitrary type.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
|
||||
#ifndef GENERIC_VALUE_H
|
||||
#define GENERIC_VALUE_H
|
||||
|
||||
#include "Support/DataTypes.h"
|
||||
|
||||
typedef uint64_t PointerTy;
|
||||
|
||||
union GenericValue {
|
||||
bool BoolVal;
|
||||
unsigned char UByteVal;
|
||||
signed char SByteVal;
|
||||
unsigned short UShortVal;
|
||||
signed short ShortVal;
|
||||
unsigned int UIntVal;
|
||||
signed int IntVal;
|
||||
uint64_t ULongVal;
|
||||
int64_t LongVal;
|
||||
double DoubleVal;
|
||||
float FloatVal;
|
||||
PointerTy PointerVal;
|
||||
unsigned char Untyped[8];
|
||||
|
||||
GenericValue() {}
|
||||
GenericValue(void *V) {
|
||||
PointerVal = (PointerTy)(intptr_t)V;
|
||||
}
|
||||
};
|
||||
|
||||
inline GenericValue PTOGV(void *P) { return GenericValue(P); }
|
||||
inline void* GVTOP(const GenericValue &GV) {
|
||||
return (void*)(intptr_t)GV.PointerVal;
|
||||
}
|
||||
#endif
|
226
lib/ExecutionEngine/ExecutionEngine.cpp
Normal file
226
lib/ExecutionEngine/ExecutionEngine.cpp
Normal file
@ -0,0 +1,226 @@
|
||||
//===-- ExecutionEngine.cpp - Common Implementation shared by EE's --------===//
|
||||
//
|
||||
// This file defines the common interface used by the various execution engine
|
||||
// subclasses.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "ExecutionEngine.h"
|
||||
#include "GenericValue.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "Support/Statistic.h"
|
||||
|
||||
Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
|
||||
|
||||
// getPointerToGlobal - This returns the address of the specified global
|
||||
// value. This may involve code generation if it's a function.
|
||||
//
|
||||
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
|
||||
if (const Function *F = dyn_cast<Function>(GV))
|
||||
return getPointerToFunction(F);
|
||||
|
||||
assert(GlobalAddress[GV] && "Global hasn't had an address allocated yet?");
|
||||
return GlobalAddress[GV];
|
||||
}
|
||||
|
||||
|
||||
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
|
||||
GenericValue Result;
|
||||
#define GET_CONST_VAL(TY, CLASS) \
|
||||
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
|
||||
|
||||
switch (C->getType()->getPrimitiveID()) {
|
||||
GET_CONST_VAL(Bool , ConstantBool);
|
||||
GET_CONST_VAL(UByte , ConstantUInt);
|
||||
GET_CONST_VAL(SByte , ConstantSInt);
|
||||
GET_CONST_VAL(UShort , ConstantUInt);
|
||||
GET_CONST_VAL(Short , ConstantSInt);
|
||||
GET_CONST_VAL(UInt , ConstantUInt);
|
||||
GET_CONST_VAL(Int , ConstantSInt);
|
||||
GET_CONST_VAL(ULong , ConstantUInt);
|
||||
GET_CONST_VAL(Long , ConstantSInt);
|
||||
GET_CONST_VAL(Float , ConstantFP);
|
||||
GET_CONST_VAL(Double , ConstantFP);
|
||||
#undef GET_CONST_VAL
|
||||
case Type::PointerTyID:
|
||||
if (isa<ConstantPointerNull>(C)) {
|
||||
Result.PointerVal = 0;
|
||||
} else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){
|
||||
Result = PTOGV(getPointerToGlobal(CPR->getValue()));
|
||||
|
||||
} else {
|
||||
assert(0 && "Unknown constant pointer type!");
|
||||
}
|
||||
break;
|
||||
default:
|
||||
cout << "ERROR: Constant unimp for type: " << C->getType() << "\n";
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
|
||||
const Type *Ty) {
|
||||
if (getTargetData().isLittleEndian()) {
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
case Type::BoolTyID:
|
||||
case Type::UByteTyID:
|
||||
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
|
||||
case Type::UShortTyID:
|
||||
case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
|
||||
Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
|
||||
break;
|
||||
case Type::FloatTyID:
|
||||
case Type::UIntTyID:
|
||||
case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
|
||||
Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
|
||||
Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
|
||||
Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
|
||||
break;
|
||||
case Type::DoubleTyID:
|
||||
case Type::ULongTyID:
|
||||
case Type::LongTyID:
|
||||
case Type::PointerTyID: Ptr->Untyped[0] = Val.ULongVal & 255;
|
||||
Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255;
|
||||
Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
|
||||
Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
|
||||
Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
|
||||
Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
|
||||
Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
|
||||
Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
|
||||
break;
|
||||
default:
|
||||
cout << "Cannot store value of type " << Ty << "!\n";
|
||||
}
|
||||
} else {
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
case Type::BoolTyID:
|
||||
case Type::UByteTyID:
|
||||
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
|
||||
case Type::UShortTyID:
|
||||
case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
|
||||
Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
|
||||
break;
|
||||
case Type::FloatTyID:
|
||||
case Type::UIntTyID:
|
||||
case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
|
||||
Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
|
||||
Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
|
||||
Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
|
||||
break;
|
||||
case Type::DoubleTyID:
|
||||
case Type::ULongTyID:
|
||||
case Type::LongTyID:
|
||||
case Type::PointerTyID: Ptr->Untyped[7] = Val.ULongVal & 255;
|
||||
Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255;
|
||||
Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
|
||||
Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
|
||||
Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
|
||||
Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
|
||||
Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
|
||||
Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
|
||||
break;
|
||||
default:
|
||||
cout << "Cannot store value of type " << Ty << "!\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// InitializeMemory - Recursive function to apply a Constant value into the
|
||||
// specified memory location...
|
||||
//
|
||||
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
|
||||
if (Init->getType()->isFirstClassType()) {
|
||||
GenericValue Val = getConstantValue(Init);
|
||||
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
|
||||
return;
|
||||
}
|
||||
|
||||
switch (Init->getType()->getPrimitiveID()) {
|
||||
case Type::ArrayTyID: {
|
||||
const ConstantArray *CPA = cast<ConstantArray>(Init);
|
||||
const vector<Use> &Val = CPA->getValues();
|
||||
unsigned ElementSize =
|
||||
getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
|
||||
for (unsigned i = 0; i < Val.size(); ++i)
|
||||
InitializeMemory(cast<Constant>(Val[i].get()), (char*)Addr+i*ElementSize);
|
||||
return;
|
||||
}
|
||||
|
||||
case Type::StructTyID: {
|
||||
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
|
||||
const StructLayout *SL =
|
||||
getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
|
||||
const vector<Use> &Val = CPS->getValues();
|
||||
for (unsigned i = 0; i < Val.size(); ++i)
|
||||
InitializeMemory(cast<Constant>(Val[i].get()),
|
||||
(char*)Addr+SL->MemberOffsets[i]);
|
||||
return;
|
||||
}
|
||||
|
||||
default:
|
||||
std::cerr << "Bad Type: " << Init->getType() << "\n";
|
||||
assert(0 && "Unknown constant type to initialize memory with!");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void *ExecutionEngine::CreateArgv(const std::vector<std::string> &InputArgv) {
|
||||
// Pointers are 64 bits...
|
||||
PointerTy *Result = new PointerTy[InputArgv.size()+1]; // 64 bit assumption
|
||||
DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
|
||||
|
||||
for (unsigned i = 0; i < InputArgv.size(); ++i) {
|
||||
unsigned Size = InputArgv[i].size()+1;
|
||||
char *Dest = new char[Size];
|
||||
DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
|
||||
|
||||
copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
|
||||
Dest[Size-1] = 0;
|
||||
|
||||
// Endian safe: Result[i] = (PointerTy)Dest;
|
||||
StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i),
|
||||
Type::LongTy); // 64 bit assumption
|
||||
}
|
||||
|
||||
Result[InputArgv.size()] = 0;
|
||||
return Result;
|
||||
}
|
||||
|
||||
/// EmitGlobals - Emit all of the global variables to memory, storing their
|
||||
/// addresses into GlobalAddress. This must make sure to copy the contents of
|
||||
/// their initializers into the memory.
|
||||
///
|
||||
void ExecutionEngine::emitGlobals() {
|
||||
const TargetData &TD = getTargetData();
|
||||
|
||||
// Loop over all of the global variables in the program, allocating the memory
|
||||
// to hold them.
|
||||
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
|
||||
I != E; ++I)
|
||||
if (!I->isExternal()) {
|
||||
// Get the type of the global...
|
||||
const Type *Ty = I->getType()->getElementType();
|
||||
|
||||
// Allocate some memory for it!
|
||||
unsigned Size = TD.getTypeSize(Ty);
|
||||
GlobalAddress[I] = new char[Size];
|
||||
NumInitBytes += Size;
|
||||
|
||||
DEBUG(std::cerr << "Global '" << I->getName() << "' -> "
|
||||
<< (void*)GlobalAddress[I] << "\n");
|
||||
} else {
|
||||
assert(0 && "References to external globals not handled yet!");
|
||||
}
|
||||
|
||||
// Now that all of the globals are set up in memory, loop through them all and
|
||||
// initialize their contents.
|
||||
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
|
||||
I != E; ++I)
|
||||
if (!I->isExternal())
|
||||
InitializeMemory(I->getInitializer(), GlobalAddress[I]);
|
||||
}
|
||||
|
56
lib/ExecutionEngine/Interpreter/Interpreter.cpp
Normal file
56
lib/ExecutionEngine/Interpreter/Interpreter.cpp
Normal file
@ -0,0 +1,56 @@
|
||||
//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===//
|
||||
//
|
||||
// This file implements the top-level functionality for the LLVM interpreter.
|
||||
// This interpreter is designed to be a very simple, portable, inefficient
|
||||
// interpreter.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Interpreter.h"
|
||||
#include "llvm/Target/TargetMachineImpls.h"
|
||||
|
||||
/// createInterpreter - Create a new interpreter object. This can never fail.
|
||||
///
|
||||
ExecutionEngine *ExecutionEngine::createInterpreter(Module *M,
|
||||
unsigned Config,
|
||||
bool DebugMode,
|
||||
bool TraceMode) {
|
||||
return new Interpreter(M, Config, DebugMode, TraceMode);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Interpreter ctor - Initialize stuff
|
||||
//
|
||||
Interpreter::Interpreter(Module *M, unsigned Config,
|
||||
bool DebugMode, bool TraceMode)
|
||||
: ExecutionEngine(M), ExitCode(0), Debug(DebugMode), Trace(TraceMode),
|
||||
CurFrame(-1), TD("lli", (Config & TM::EndianMask) == TM::LittleEndian,
|
||||
1, 4,
|
||||
(Config & TM::PtrSizeMask) == TM::PtrSize64 ? 8 : 4,
|
||||
(Config & TM::PtrSizeMask) == TM::PtrSize64 ? 8 : 4) {
|
||||
|
||||
setTargetData(TD);
|
||||
// Initialize the "backend"
|
||||
initializeExecutionEngine();
|
||||
initializeExternalMethods();
|
||||
CW.setModule(M); // Update Writer
|
||||
}
|
||||
|
||||
/// run - Start execution with the specified function and arguments.
|
||||
///
|
||||
int Interpreter::run(const std::string &MainFunction,
|
||||
const std::vector<std::string> &Args) {
|
||||
// Start interpreter into the main function...
|
||||
//
|
||||
if (!callMainMethod(MainFunction, Args) && !Debug) {
|
||||
// If not in debug mode and if the call succeeded, run the code now...
|
||||
run();
|
||||
}
|
||||
|
||||
// If debug mode, allow the user to interact... also, if the user pressed
|
||||
// ctrl-c or execution hit an error, enter the event loop...
|
||||
if (Debug || isStopped())
|
||||
handleUserInput();
|
||||
return ExitCode;
|
||||
}
|
||||
|
4
lib/ExecutionEngine/Interpreter/Makefile
Normal file
4
lib/ExecutionEngine/Interpreter/Makefile
Normal file
@ -0,0 +1,4 @@
|
||||
LEVEL = ../../..
|
||||
LIBRARYNAME = lli-interpreter
|
||||
|
||||
include $(LEVEL)/Makefile.common
|
62
lib/ExecutionEngine/JIT/Callback.cpp
Normal file
62
lib/ExecutionEngine/JIT/Callback.cpp
Normal file
@ -0,0 +1,62 @@
|
||||
//===-- Callback.cpp - Trap handler for function resolution ---------------===//
|
||||
//
|
||||
// This file defines the SIGSEGV handler which is invoked when a reference to a
|
||||
// non-codegen'd function is found.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "VM.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include <signal.h>
|
||||
#include <ucontext.h>
|
||||
#include <iostream>
|
||||
|
||||
static VM *TheVM = 0;
|
||||
|
||||
static void TrapHandler(int TN, siginfo_t *SI, ucontext_t *ucp) {
|
||||
assert(TN == SIGSEGV && "Should be SIGSEGV!");
|
||||
|
||||
#ifdef REG_EIP /* this code does not compile on Sparc! */
|
||||
if (SI->si_code != SEGV_MAPERR || SI->si_addr != 0 ||
|
||||
ucp->uc_mcontext.gregs[REG_EIP] != 0) {
|
||||
std::cerr << "Bad SEGV encountered!\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
// The call instruction should have pushed the return value onto the stack...
|
||||
unsigned RefAddr = *(unsigned*)ucp->uc_mcontext.gregs[REG_ESP];
|
||||
RefAddr -= 4; // Backtrack to the reference itself...
|
||||
|
||||
DEBUG(std::cerr << "In SEGV handler! Addr=0x" << std::hex << RefAddr
|
||||
<< " ESP=0x" << ucp->uc_mcontext.gregs[REG_ESP] << std::dec
|
||||
<< ": Resolving call to function: "
|
||||
<< TheVM->getFunctionReferencedName((void*)RefAddr) << "\n");
|
||||
|
||||
// Sanity check to make sure this really is a call instruction...
|
||||
assert(((unsigned char*)RefAddr)[-1] == 0xE8 && "Not a call instr!");
|
||||
|
||||
unsigned NewVal = (unsigned)TheVM->resolveFunctionReference((void*)RefAddr);
|
||||
|
||||
// Rewrite the call target... so that we don't fault every time we execute
|
||||
// the call.
|
||||
*(unsigned*)RefAddr = NewVal-RefAddr-4;
|
||||
|
||||
// Change the instruction pointer to be the real target of the call...
|
||||
ucp->uc_mcontext.gregs[REG_EIP] = NewVal;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void VM::registerCallback() {
|
||||
TheVM = this;
|
||||
|
||||
// Register the signal handler...
|
||||
struct sigaction SA;
|
||||
SA.sa_sigaction = (void (*)(int, siginfo_t*, void*))TrapHandler;
|
||||
sigfillset(&SA.sa_mask); // Block all signals while codegen'ing
|
||||
SA.sa_flags = SA_NOCLDSTOP|SA_SIGINFO; // Get siginfo
|
||||
sigaction(SIGSEGV, &SA, 0); // Install the handler
|
||||
}
|
||||
|
||||
|
0
lib/ExecutionEngine/JIT/GlobalVars.cpp
Normal file
0
lib/ExecutionEngine/JIT/GlobalVars.cpp
Normal file
53
lib/ExecutionEngine/JIT/JIT.cpp
Normal file
53
lib/ExecutionEngine/JIT/JIT.cpp
Normal file
@ -0,0 +1,53 @@
|
||||
//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
|
||||
//
|
||||
// This file implements the top-level support for creating a Just-In-Time
|
||||
// compiler for the current architecture.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "VM.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Target/TargetMachineImpls.h"
|
||||
#include "llvm/Module.h"
|
||||
|
||||
|
||||
/// createJIT - Create an return a new JIT compiler if there is one available
|
||||
/// for the current target. Otherwise it returns null.
|
||||
///
|
||||
ExecutionEngine *ExecutionEngine::createJIT(Module *M, unsigned Config) {
|
||||
// FIXME: This should be controlled by which subdirectory gets linked in!
|
||||
#if !defined(i386) && !defined(__i386__) && !defined(__x86__)
|
||||
return 0;
|
||||
#endif
|
||||
// Allocate a target... in the future this will be controllable on the
|
||||
// command line.
|
||||
TargetMachine *Target = allocateX86TargetMachine(Config);
|
||||
assert(Target && "Could not allocate X86 target machine!");
|
||||
|
||||
// Create the virtual machine object...
|
||||
return new VM(M, Target);
|
||||
}
|
||||
|
||||
VM::VM(Module *M, TargetMachine *tm) : ExecutionEngine(M), TM(*tm) {
|
||||
setTargetData(TM.getTargetData());
|
||||
MCE = createEmitter(*this); // Initialize MCE
|
||||
setupPassManager();
|
||||
registerCallback();
|
||||
}
|
||||
|
||||
int VM::run(const std::string &FnName, const std::vector<std::string> &Args) {
|
||||
Function *F = getModule().getNamedFunction(FnName);
|
||||
if (F == 0) {
|
||||
std::cerr << "Could not find function '" << FnName <<"' in module!\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
int(*PF)(int, char**) = (int(*)(int, char**))getPointerToFunction(F);
|
||||
assert(PF != 0 && "Null pointer to function?");
|
||||
|
||||
// Build an argv vector...
|
||||
char **Argv = (char**)CreateArgv(Args);
|
||||
|
||||
// Call the main function...
|
||||
return PF(Args.size(), Argv);
|
||||
}
|
107
lib/ExecutionEngine/JIT/JITEmitter.cpp
Normal file
107
lib/ExecutionEngine/JIT/JITEmitter.cpp
Normal file
@ -0,0 +1,107 @@
|
||||
//===-- Emitter.cpp - Write machine code to executable memory -------------===//
|
||||
//
|
||||
// This file defines a MachineCodeEmitter object that is used by Jello to write
|
||||
// machine code to memory and remember where relocatable values lie.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "VM.h"
|
||||
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "Support/Statistic.h"
|
||||
|
||||
namespace {
|
||||
Statistic<> NumBytes("jello", "Number of bytes of machine code compiled");
|
||||
|
||||
class Emitter : public MachineCodeEmitter {
|
||||
VM &TheVM;
|
||||
|
||||
unsigned char *CurBlock;
|
||||
unsigned char *CurByte;
|
||||
|
||||
std::vector<std::pair<BasicBlock*, unsigned *> > BBRefs;
|
||||
std::map<BasicBlock*, unsigned> BBLocations;
|
||||
public:
|
||||
Emitter(VM &vm) : TheVM(vm) {}
|
||||
|
||||
virtual void startFunction(MachineFunction &F);
|
||||
virtual void finishFunction(MachineFunction &F);
|
||||
virtual void startBasicBlock(MachineBasicBlock &BB);
|
||||
virtual void emitByte(unsigned char B);
|
||||
virtual void emitPCRelativeDisp(Value *V);
|
||||
virtual void emitGlobalAddress(GlobalValue *V);
|
||||
};
|
||||
}
|
||||
|
||||
MachineCodeEmitter *VM::createEmitter(VM &V) {
|
||||
return new Emitter(V);
|
||||
}
|
||||
|
||||
|
||||
#define _POSIX_MAPPED_FILES
|
||||
#include <unistd.h>
|
||||
#include <sys/mman.h>
|
||||
|
||||
static void *getMemory() {
|
||||
return mmap(0, 4096*2, PROT_READ|PROT_WRITE|PROT_EXEC,
|
||||
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
|
||||
}
|
||||
|
||||
|
||||
void Emitter::startFunction(MachineFunction &F) {
|
||||
CurBlock = (unsigned char *)getMemory();
|
||||
CurByte = CurBlock; // Start writing at the beginning of the fn.
|
||||
TheVM.addGlobalMapping(F.getFunction(), CurBlock);
|
||||
}
|
||||
|
||||
void Emitter::finishFunction(MachineFunction &F) {
|
||||
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
|
||||
unsigned Location = BBLocations[BBRefs[i].first];
|
||||
unsigned *Ref = BBRefs[i].second;
|
||||
*Ref = Location-(unsigned)Ref-4;
|
||||
}
|
||||
BBRefs.clear();
|
||||
BBLocations.clear();
|
||||
|
||||
NumBytes += CurByte-CurBlock;
|
||||
|
||||
DEBUG(std::cerr << "Finished CodeGen of [" << std::hex << (unsigned)CurBlock
|
||||
<< std::dec << "] Function: " << F.getFunction()->getName()
|
||||
<< ": " << CurByte-CurBlock << " bytes of text\n");
|
||||
}
|
||||
|
||||
void Emitter::startBasicBlock(MachineBasicBlock &BB) {
|
||||
BBLocations[BB.getBasicBlock()] = (unsigned)CurByte;
|
||||
}
|
||||
|
||||
|
||||
void Emitter::emitByte(unsigned char B) {
|
||||
*CurByte++ = B; // Write the byte to memory
|
||||
}
|
||||
|
||||
|
||||
// emitPCRelativeDisp - For functions, just output a displacement that will
|
||||
// cause a reference to the zero page, which will cause a seg-fault, causing
|
||||
// things to get resolved on demand. Keep track of these markers.
|
||||
//
|
||||
// For basic block references, keep track of where the references are so they
|
||||
// may be patched up when the basic block is defined.
|
||||
//
|
||||
void Emitter::emitPCRelativeDisp(Value *V) {
|
||||
if (Function *F = dyn_cast<Function>(V)) {
|
||||
TheVM.addFunctionRef(CurByte, F);
|
||||
unsigned ZeroAddr = -(unsigned)CurByte-4; // Calculate displacement to null
|
||||
*(unsigned*)CurByte = ZeroAddr; // 4 byte offset
|
||||
CurByte += 4;
|
||||
} else {
|
||||
BasicBlock *BB = cast<BasicBlock>(V); // Keep track of reference...
|
||||
BBRefs.push_back(std::make_pair(BB, (unsigned*)CurByte));
|
||||
CurByte += 4;
|
||||
}
|
||||
}
|
||||
|
||||
void Emitter::emitGlobalAddress(GlobalValue *V) {
|
||||
*(void**)CurByte = TheVM.getPointerToGlobal(V);
|
||||
CurByte += 4;
|
||||
}
|
4
lib/ExecutionEngine/JIT/Makefile
Normal file
4
lib/ExecutionEngine/JIT/Makefile
Normal file
@ -0,0 +1,4 @@
|
||||
LEVEL = ../../..
|
||||
LIBRARYNAME = lli-jit
|
||||
|
||||
include $(LEVEL)/Makefile.common
|
84
lib/ExecutionEngine/JIT/VM.cpp
Normal file
84
lib/ExecutionEngine/JIT/VM.cpp
Normal file
@ -0,0 +1,84 @@
|
||||
//===-- jello.cpp - LLVM Just in Time Compiler ----------------------------===//
|
||||
//
|
||||
// This tool implements a just-in-time compiler for LLVM, allowing direct
|
||||
// execution of LLVM bytecode in an efficient manner.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "VM.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
||||
#include "llvm/Function.h"
|
||||
#include <dlfcn.h> // dlsym access
|
||||
|
||||
|
||||
VM::~VM() {
|
||||
delete MCE;
|
||||
delete &TM;
|
||||
}
|
||||
|
||||
/// setupPassManager - Initialize the VM PassManager object with all of the
|
||||
/// passes needed for the target to generate code.
|
||||
///
|
||||
void VM::setupPassManager() {
|
||||
// Compile LLVM Code down to machine code in the intermediate representation
|
||||
if (TM.addPassesToJITCompile(PM)) {
|
||||
std::cerr << "lli: target '" << TM.getName()
|
||||
<< "' doesn't support JIT compilation!\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
// Turn the machine code intermediate representation into bytes in memory that
|
||||
// may be executed.
|
||||
//
|
||||
if (TM.addPassesToEmitMachineCode(PM, *MCE)) {
|
||||
std::cerr << "lli: target '" << TM.getName()
|
||||
<< "' doesn't support machine code emission!\n";
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
void *VM::resolveFunctionReference(void *RefAddr) {
|
||||
Function *F = FunctionRefs[RefAddr];
|
||||
assert(F && "Reference address not known!");
|
||||
|
||||
void *Addr = getPointerToFunction(F);
|
||||
assert(Addr && "Pointer to function unknown!");
|
||||
|
||||
FunctionRefs.erase(RefAddr);
|
||||
return Addr;
|
||||
}
|
||||
|
||||
const std::string &VM::getFunctionReferencedName(void *RefAddr) {
|
||||
return FunctionRefs[RefAddr]->getName();
|
||||
}
|
||||
|
||||
static void NoopFn() {}
|
||||
|
||||
/// getPointerToFunction - This method is used to get the address of the
|
||||
/// specified function, compiling it if neccesary.
|
||||
///
|
||||
void *VM::getPointerToFunction(const Function *F) {
|
||||
void *&Addr = GlobalAddress[F]; // Function already code gen'd
|
||||
if (Addr) return Addr;
|
||||
|
||||
if (F->isExternal()) {
|
||||
// If it's an external function, look it up in the process image...
|
||||
void *Ptr = dlsym(0, F->getName().c_str());
|
||||
if (Ptr == 0) {
|
||||
std::cerr << "WARNING: Cannot resolve fn '" << F->getName()
|
||||
<< "' using a dummy noop function instead!\n";
|
||||
Ptr = (void*)NoopFn;
|
||||
}
|
||||
|
||||
return Addr = Ptr;
|
||||
}
|
||||
|
||||
// JIT all of the functions in the module. Eventually this will JIT functions
|
||||
// on demand. This has the effect of populating all of the non-external
|
||||
// functions into the GlobalAddress table.
|
||||
PM.run(getModule());
|
||||
|
||||
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
|
||||
return Addr;
|
||||
}
|
Loading…
Reference in New Issue
Block a user