Initial checkin of new LLI with JIT compiler

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5126 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-12-24 00:01:05 +00:00
parent fe11a97fcd
commit bd199fb114
11 changed files with 722 additions and 0 deletions

View File

@ -0,0 +1,86 @@
//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
//
// This file defines the abstract interface that implements execution support
// for LLVM.
//
//===----------------------------------------------------------------------===//
#ifndef EXECUTION_ENGINE_H
#define EXECUTION_ENGINE_H
#include <vector>
#include <string>
#include <map>
class Constant;
class Type;
class GlobalValue;
class Function;
class Module;
class TargetData;
union GenericValue;
class ExecutionEngine {
Module &CurMod;
const TargetData *TD;
protected:
// GlobalAddress - A mapping between LLVM global values and their actualized
// version...
std::map<const GlobalValue*, void *> GlobalAddress;
void setTargetData(const TargetData &td) {
TD = &td;
emitGlobals();
}
public:
ExecutionEngine(Module *M) : CurMod(*M) {
assert(M && "Module is null?");
}
virtual ~ExecutionEngine();
Module &getModule() const { return CurMod; }
const TargetData &getTargetData() const { return *TD; }
/// run - Start execution with the specified function and arguments.
///
virtual int run(const std::string &FnName,
const std::vector<std::string> &Args) = 0;
/// createJIT - Create an return a new JIT compiler if there is one available
/// for the current target. Otherwise it returns null.
///
static ExecutionEngine *createJIT(Module *M, unsigned Config);
/// createInterpreter - Create a new interpreter object. This can never fail.
///
static ExecutionEngine *createInterpreter(Module *M, unsigned Config,
bool DebugMode, bool TraceMode);
void addGlobalMapping(const Function *F, void *Addr) {
void *&CurVal = GlobalAddress[(const GlobalValue*)F];
assert(CurVal == 0 && "GlobalMapping already established!");
CurVal = Addr;
}
// getPointerToGlobal - This returns the address of the specified global
// value. This may involve code generation if it's a function.
//
void *getPointerToGlobal(const GlobalValue *GV);
// getPointerToFunction - The different EE's represent function bodies in
// different ways. They should each implement this to say what a function
// pointer should look like.
//
virtual void *getPointerToFunction(const Function *F) = 0;
private:
void emitGlobals();
public: // FIXME: protected: // API shared among subclasses
GenericValue getConstantValue(const Constant *C);
void StoreValueToMemory(GenericValue Val, GenericValue *Ptr, const Type *Ty);
void *CreateArgv(const std::vector<std::string> &InputArgv);
void InitializeMemory(const Constant *Init, void *Addr);
};
#endif

View File

@ -0,0 +1,40 @@
//===-- GenericValue.h - Represent any type of LLVM value -------*- C++ -*-===//
//
// The GenericValue class is used to represent an LLVM value of arbitrary type.
//
//===----------------------------------------------------------------------===//
#ifndef GENERIC_VALUE_H
#define GENERIC_VALUE_H
#include "Support/DataTypes.h"
typedef uint64_t PointerTy;
union GenericValue {
bool BoolVal;
unsigned char UByteVal;
signed char SByteVal;
unsigned short UShortVal;
signed short ShortVal;
unsigned int UIntVal;
signed int IntVal;
uint64_t ULongVal;
int64_t LongVal;
double DoubleVal;
float FloatVal;
PointerTy PointerVal;
unsigned char Untyped[8];
GenericValue() {}
GenericValue(void *V) {
PointerVal = (PointerTy)(intptr_t)V;
}
};
inline GenericValue PTOGV(void *P) { return GenericValue(P); }
inline void* GVTOP(const GenericValue &GV) {
return (void*)(intptr_t)GV.PointerVal;
}
#endif

View File

@ -0,0 +1,226 @@
//===-- ExecutionEngine.cpp - Common Implementation shared by EE's --------===//
//
// This file defines the common interface used by the various execution engine
// subclasses.
//
//===----------------------------------------------------------------------===//
#include "ExecutionEngine.h"
#include "GenericValue.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"
#include "Support/Statistic.h"
Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
// getPointerToGlobal - This returns the address of the specified global
// value. This may involve code generation if it's a function.
//
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
if (const Function *F = dyn_cast<Function>(GV))
return getPointerToFunction(F);
assert(GlobalAddress[GV] && "Global hasn't had an address allocated yet?");
return GlobalAddress[GV];
}
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GenericValue Result;
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
switch (C->getType()->getPrimitiveID()) {
GET_CONST_VAL(Bool , ConstantBool);
GET_CONST_VAL(UByte , ConstantUInt);
GET_CONST_VAL(SByte , ConstantSInt);
GET_CONST_VAL(UShort , ConstantUInt);
GET_CONST_VAL(Short , ConstantSInt);
GET_CONST_VAL(UInt , ConstantUInt);
GET_CONST_VAL(Int , ConstantSInt);
GET_CONST_VAL(ULong , ConstantUInt);
GET_CONST_VAL(Long , ConstantSInt);
GET_CONST_VAL(Float , ConstantFP);
GET_CONST_VAL(Double , ConstantFP);
#undef GET_CONST_VAL
case Type::PointerTyID:
if (isa<ConstantPointerNull>(C)) {
Result.PointerVal = 0;
} else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){
Result = PTOGV(getPointerToGlobal(CPR->getValue()));
} else {
assert(0 && "Unknown constant pointer type!");
}
break;
default:
cout << "ERROR: Constant unimp for type: " << C->getType() << "\n";
}
return Result;
}
void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
const Type *Ty) {
if (getTargetData().isLittleEndian()) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
break;
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
break;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID: Ptr->Untyped[0] = Val.ULongVal & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
break;
default:
cout << "Cannot store value of type " << Ty << "!\n";
}
} else {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
break;
case Type::FloatTyID:
case Type::UIntTyID:
case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
break;
case Type::DoubleTyID:
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID: Ptr->Untyped[7] = Val.ULongVal & 255;
Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255;
Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
break;
default:
cout << "Cannot store value of type " << Ty << "!\n";
}
}
}
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
if (Init->getType()->isFirstClassType()) {
GenericValue Val = getConstantValue(Init);
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
return;
}
switch (Init->getType()->getPrimitiveID()) {
case Type::ArrayTyID: {
const ConstantArray *CPA = cast<ConstantArray>(Init);
const vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()), (char*)Addr+i*ElementSize);
return;
}
case Type::StructTyID: {
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL =
getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
const vector<Use> &Val = CPS->getValues();
for (unsigned i = 0; i < Val.size(); ++i)
InitializeMemory(cast<Constant>(Val[i].get()),
(char*)Addr+SL->MemberOffsets[i]);
return;
}
default:
std::cerr << "Bad Type: " << Init->getType() << "\n";
assert(0 && "Unknown constant type to initialize memory with!");
}
}
void *ExecutionEngine::CreateArgv(const std::vector<std::string> &InputArgv) {
// Pointers are 64 bits...
PointerTy *Result = new PointerTy[InputArgv.size()+1]; // 64 bit assumption
DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
for (unsigned i = 0; i < InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
// Endian safe: Result[i] = (PointerTy)Dest;
StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i),
Type::LongTy); // 64 bit assumption
}
Result[InputArgv.size()] = 0;
return Result;
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
///
void ExecutionEngine::emitGlobals() {
const TargetData &TD = getTargetData();
// Loop over all of the global variables in the program, allocating the memory
// to hold them.
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
I != E; ++I)
if (!I->isExternal()) {
// Get the type of the global...
const Type *Ty = I->getType()->getElementType();
// Allocate some memory for it!
unsigned Size = TD.getTypeSize(Ty);
GlobalAddress[I] = new char[Size];
NumInitBytes += Size;
DEBUG(std::cerr << "Global '" << I->getName() << "' -> "
<< (void*)GlobalAddress[I] << "\n");
} else {
assert(0 && "References to external globals not handled yet!");
}
// Now that all of the globals are set up in memory, loop through them all and
// initialize their contents.
for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
I != E; ++I)
if (!I->isExternal())
InitializeMemory(I->getInitializer(), GlobalAddress[I]);
}

View File

@ -0,0 +1,56 @@
//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===//
//
// This file implements the top-level functionality for the LLVM interpreter.
// This interpreter is designed to be a very simple, portable, inefficient
// interpreter.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/Target/TargetMachineImpls.h"
/// createInterpreter - Create a new interpreter object. This can never fail.
///
ExecutionEngine *ExecutionEngine::createInterpreter(Module *M,
unsigned Config,
bool DebugMode,
bool TraceMode) {
return new Interpreter(M, Config, DebugMode, TraceMode);
}
//===----------------------------------------------------------------------===//
// Interpreter ctor - Initialize stuff
//
Interpreter::Interpreter(Module *M, unsigned Config,
bool DebugMode, bool TraceMode)
: ExecutionEngine(M), ExitCode(0), Debug(DebugMode), Trace(TraceMode),
CurFrame(-1), TD("lli", (Config & TM::EndianMask) == TM::LittleEndian,
1, 4,
(Config & TM::PtrSizeMask) == TM::PtrSize64 ? 8 : 4,
(Config & TM::PtrSizeMask) == TM::PtrSize64 ? 8 : 4) {
setTargetData(TD);
// Initialize the "backend"
initializeExecutionEngine();
initializeExternalMethods();
CW.setModule(M); // Update Writer
}
/// run - Start execution with the specified function and arguments.
///
int Interpreter::run(const std::string &MainFunction,
const std::vector<std::string> &Args) {
// Start interpreter into the main function...
//
if (!callMainMethod(MainFunction, Args) && !Debug) {
// If not in debug mode and if the call succeeded, run the code now...
run();
}
// If debug mode, allow the user to interact... also, if the user pressed
// ctrl-c or execution hit an error, enter the event loop...
if (Debug || isStopped())
handleUserInput();
return ExitCode;
}

View File

@ -0,0 +1,4 @@
LEVEL = ../../..
LIBRARYNAME = lli-interpreter
include $(LEVEL)/Makefile.common

View File

@ -0,0 +1,62 @@
//===-- Callback.cpp - Trap handler for function resolution ---------------===//
//
// This file defines the SIGSEGV handler which is invoked when a reference to a
// non-codegen'd function is found.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "Support/Statistic.h"
#include <signal.h>
#include <ucontext.h>
#include <iostream>
static VM *TheVM = 0;
static void TrapHandler(int TN, siginfo_t *SI, ucontext_t *ucp) {
assert(TN == SIGSEGV && "Should be SIGSEGV!");
#ifdef REG_EIP /* this code does not compile on Sparc! */
if (SI->si_code != SEGV_MAPERR || SI->si_addr != 0 ||
ucp->uc_mcontext.gregs[REG_EIP] != 0) {
std::cerr << "Bad SEGV encountered!\n";
abort();
}
// The call instruction should have pushed the return value onto the stack...
unsigned RefAddr = *(unsigned*)ucp->uc_mcontext.gregs[REG_ESP];
RefAddr -= 4; // Backtrack to the reference itself...
DEBUG(std::cerr << "In SEGV handler! Addr=0x" << std::hex << RefAddr
<< " ESP=0x" << ucp->uc_mcontext.gregs[REG_ESP] << std::dec
<< ": Resolving call to function: "
<< TheVM->getFunctionReferencedName((void*)RefAddr) << "\n");
// Sanity check to make sure this really is a call instruction...
assert(((unsigned char*)RefAddr)[-1] == 0xE8 && "Not a call instr!");
unsigned NewVal = (unsigned)TheVM->resolveFunctionReference((void*)RefAddr);
// Rewrite the call target... so that we don't fault every time we execute
// the call.
*(unsigned*)RefAddr = NewVal-RefAddr-4;
// Change the instruction pointer to be the real target of the call...
ucp->uc_mcontext.gregs[REG_EIP] = NewVal;
#endif
}
void VM::registerCallback() {
TheVM = this;
// Register the signal handler...
struct sigaction SA;
SA.sa_sigaction = (void (*)(int, siginfo_t*, void*))TrapHandler;
sigfillset(&SA.sa_mask); // Block all signals while codegen'ing
SA.sa_flags = SA_NOCLDSTOP|SA_SIGINFO; // Get siginfo
sigaction(SIGSEGV, &SA, 0); // Install the handler
}

View File

View File

@ -0,0 +1,53 @@
//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
//
// This file implements the top-level support for creating a Just-In-Time
// compiler for the current architecture.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetMachineImpls.h"
#include "llvm/Module.h"
/// createJIT - Create an return a new JIT compiler if there is one available
/// for the current target. Otherwise it returns null.
///
ExecutionEngine *ExecutionEngine::createJIT(Module *M, unsigned Config) {
// FIXME: This should be controlled by which subdirectory gets linked in!
#if !defined(i386) && !defined(__i386__) && !defined(__x86__)
return 0;
#endif
// Allocate a target... in the future this will be controllable on the
// command line.
TargetMachine *Target = allocateX86TargetMachine(Config);
assert(Target && "Could not allocate X86 target machine!");
// Create the virtual machine object...
return new VM(M, Target);
}
VM::VM(Module *M, TargetMachine *tm) : ExecutionEngine(M), TM(*tm) {
setTargetData(TM.getTargetData());
MCE = createEmitter(*this); // Initialize MCE
setupPassManager();
registerCallback();
}
int VM::run(const std::string &FnName, const std::vector<std::string> &Args) {
Function *F = getModule().getNamedFunction(FnName);
if (F == 0) {
std::cerr << "Could not find function '" << FnName <<"' in module!\n";
return 1;
}
int(*PF)(int, char**) = (int(*)(int, char**))getPointerToFunction(F);
assert(PF != 0 && "Null pointer to function?");
// Build an argv vector...
char **Argv = (char**)CreateArgv(Args);
// Call the main function...
return PF(Args.size(), Argv);
}

View File

@ -0,0 +1,107 @@
//===-- Emitter.cpp - Write machine code to executable memory -------------===//
//
// This file defines a MachineCodeEmitter object that is used by Jello to write
// machine code to memory and remember where relocatable values lie.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Function.h"
#include "Support/Statistic.h"
namespace {
Statistic<> NumBytes("jello", "Number of bytes of machine code compiled");
class Emitter : public MachineCodeEmitter {
VM &TheVM;
unsigned char *CurBlock;
unsigned char *CurByte;
std::vector<std::pair<BasicBlock*, unsigned *> > BBRefs;
std::map<BasicBlock*, unsigned> BBLocations;
public:
Emitter(VM &vm) : TheVM(vm) {}
virtual void startFunction(MachineFunction &F);
virtual void finishFunction(MachineFunction &F);
virtual void startBasicBlock(MachineBasicBlock &BB);
virtual void emitByte(unsigned char B);
virtual void emitPCRelativeDisp(Value *V);
virtual void emitGlobalAddress(GlobalValue *V);
};
}
MachineCodeEmitter *VM::createEmitter(VM &V) {
return new Emitter(V);
}
#define _POSIX_MAPPED_FILES
#include <unistd.h>
#include <sys/mman.h>
static void *getMemory() {
return mmap(0, 4096*2, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
}
void Emitter::startFunction(MachineFunction &F) {
CurBlock = (unsigned char *)getMemory();
CurByte = CurBlock; // Start writing at the beginning of the fn.
TheVM.addGlobalMapping(F.getFunction(), CurBlock);
}
void Emitter::finishFunction(MachineFunction &F) {
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
unsigned Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second;
*Ref = Location-(unsigned)Ref-4;
}
BBRefs.clear();
BBLocations.clear();
NumBytes += CurByte-CurBlock;
DEBUG(std::cerr << "Finished CodeGen of [" << std::hex << (unsigned)CurBlock
<< std::dec << "] Function: " << F.getFunction()->getName()
<< ": " << CurByte-CurBlock << " bytes of text\n");
}
void Emitter::startBasicBlock(MachineBasicBlock &BB) {
BBLocations[BB.getBasicBlock()] = (unsigned)CurByte;
}
void Emitter::emitByte(unsigned char B) {
*CurByte++ = B; // Write the byte to memory
}
// emitPCRelativeDisp - For functions, just output a displacement that will
// cause a reference to the zero page, which will cause a seg-fault, causing
// things to get resolved on demand. Keep track of these markers.
//
// For basic block references, keep track of where the references are so they
// may be patched up when the basic block is defined.
//
void Emitter::emitPCRelativeDisp(Value *V) {
if (Function *F = dyn_cast<Function>(V)) {
TheVM.addFunctionRef(CurByte, F);
unsigned ZeroAddr = -(unsigned)CurByte-4; // Calculate displacement to null
*(unsigned*)CurByte = ZeroAddr; // 4 byte offset
CurByte += 4;
} else {
BasicBlock *BB = cast<BasicBlock>(V); // Keep track of reference...
BBRefs.push_back(std::make_pair(BB, (unsigned*)CurByte));
CurByte += 4;
}
}
void Emitter::emitGlobalAddress(GlobalValue *V) {
*(void**)CurByte = TheVM.getPointerToGlobal(V);
CurByte += 4;
}

View File

@ -0,0 +1,4 @@
LEVEL = ../../..
LIBRARYNAME = lli-jit
include $(LEVEL)/Makefile.common

View File

@ -0,0 +1,84 @@
//===-- jello.cpp - LLVM Just in Time Compiler ----------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bytecode in an efficient manner.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/Function.h"
#include <dlfcn.h> // dlsym access
VM::~VM() {
delete MCE;
delete &TM;
}
/// setupPassManager - Initialize the VM PassManager object with all of the
/// passes needed for the target to generate code.
///
void VM::setupPassManager() {
// Compile LLVM Code down to machine code in the intermediate representation
if (TM.addPassesToJITCompile(PM)) {
std::cerr << "lli: target '" << TM.getName()
<< "' doesn't support JIT compilation!\n";
abort();
}
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
//
if (TM.addPassesToEmitMachineCode(PM, *MCE)) {
std::cerr << "lli: target '" << TM.getName()
<< "' doesn't support machine code emission!\n";
abort();
}
}
void *VM::resolveFunctionReference(void *RefAddr) {
Function *F = FunctionRefs[RefAddr];
assert(F && "Reference address not known!");
void *Addr = getPointerToFunction(F);
assert(Addr && "Pointer to function unknown!");
FunctionRefs.erase(RefAddr);
return Addr;
}
const std::string &VM::getFunctionReferencedName(void *RefAddr) {
return FunctionRefs[RefAddr]->getName();
}
static void NoopFn() {}
/// getPointerToFunction - This method is used to get the address of the
/// specified function, compiling it if neccesary.
///
void *VM::getPointerToFunction(const Function *F) {
void *&Addr = GlobalAddress[F]; // Function already code gen'd
if (Addr) return Addr;
if (F->isExternal()) {
// If it's an external function, look it up in the process image...
void *Ptr = dlsym(0, F->getName().c_str());
if (Ptr == 0) {
std::cerr << "WARNING: Cannot resolve fn '" << F->getName()
<< "' using a dummy noop function instead!\n";
Ptr = (void*)NoopFn;
}
return Addr = Ptr;
}
// JIT all of the functions in the module. Eventually this will JIT functions
// on demand. This has the effect of populating all of the non-external
// functions into the GlobalAddress table.
PM.run(getModule());
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
return Addr;
}