[X86] Use hash table in LEA optimization pass.

Use hash table (key is a memory operand) to store found LEA instructions to reduce compile time.

Differential Revision: http://reviews.llvm.org/D16404



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259770 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrey Turetskiy 2016-02-04 08:57:03 +00:00
parent 125c5460fd
commit be1b2fc159

View File

@ -42,6 +42,133 @@ static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden,
STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
class MemOpKey;
/// \brief Returns a hash table key based on memory operands of \p MI. The
/// number of the first memory operand of \p MI is specified through \p N.
static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N);
/// \brief Returns true if two machine operands are identical and they are not
/// physical registers.
static inline bool isIdenticalOp(const MachineOperand &MO1,
const MachineOperand &MO2);
/// \brief Returns true if the instruction is LEA.
static inline bool isLEA(const MachineInstr &MI);
/// A key based on instruction's memory operands.
class MemOpKey {
public:
MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
const MachineOperand *Index, const MachineOperand *Segment,
const MachineOperand *Disp)
: Disp(Disp) {
Operands[0] = Base;
Operands[1] = Scale;
Operands[2] = Index;
Operands[3] = Segment;
}
bool operator==(const MemOpKey &Other) const {
// Addresses' bases, scales, indices and segments must be identical.
for (int i = 0; i < 4; ++i)
if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
return false;
assert((Disp->isImm() || Disp->isGlobal()) &&
(Other.Disp->isImm() || Other.Disp->isGlobal()) &&
"Address displacement operand is always an immediate or a global");
// Addresses' displacements must be either immediates or the same global.
// Immediates' and offsets' values don't matter for the operator since the
// difference will be taken care of during instruction substitution.
if ((Disp->isImm() && Other.Disp->isImm()) ||
(Disp->isGlobal() && Other.Disp->isGlobal() &&
Disp->getGlobal() == Other.Disp->getGlobal()))
return true;
return false;
}
// Address' base, scale, index and segment operands.
const MachineOperand *Operands[4];
// Address' displacement operand.
const MachineOperand *Disp;
};
/// Provide DenseMapInfo for MemOpKey.
namespace llvm {
template <> struct DenseMapInfo<MemOpKey> {
typedef DenseMapInfo<const MachineOperand *> PtrInfo;
static inline MemOpKey getEmptyKey() {
return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
PtrInfo::getEmptyKey());
}
static inline MemOpKey getTombstoneKey() {
return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
PtrInfo::getTombstoneKey());
}
static unsigned getHashValue(const MemOpKey &Val) {
// Checking any field of MemOpKey is enough to determine if the key is
// empty or tombstone.
assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
assert(Val.Disp != PtrInfo::getTombstoneKey() &&
"Cannot hash the tombstone key");
hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
*Val.Operands[2], *Val.Operands[3]);
// If the address displacement is an immediate, it should not affect the
// hash so that memory operands which differ only be immediate displacement
// would have the same hash. If the address displacement is a global, we
// should reflect this global in the hash.
if (Val.Disp->isGlobal())
Hash = hash_combine(Hash, Val.Disp->getGlobal());
return (unsigned)Hash;
}
static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
// Checking any field of MemOpKey is enough to determine if the key is
// empty or tombstone.
if (RHS.Disp == PtrInfo::getEmptyKey())
return LHS.Disp == PtrInfo::getEmptyKey();
if (RHS.Disp == PtrInfo::getTombstoneKey())
return LHS.Disp == PtrInfo::getTombstoneKey();
return LHS == RHS;
}
};
}
static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
assert((isLEA(MI) || MI.mayLoadOrStore()) &&
"The instruction must be a LEA, a load or a store");
return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
&MI.getOperand(N + X86::AddrScaleAmt),
&MI.getOperand(N + X86::AddrIndexReg),
&MI.getOperand(N + X86::AddrSegmentReg),
&MI.getOperand(N + X86::AddrDisp));
}
static inline bool isIdenticalOp(const MachineOperand &MO1,
const MachineOperand &MO2) {
return MO1.isIdenticalTo(MO2) &&
(!MO1.isReg() ||
!TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
}
static inline bool isLEA(const MachineInstr &MI) {
unsigned Opcode = MI.getOpcode();
return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
}
namespace {
class OptimizeLEAPass : public MachineFunctionPass {
public:
@ -55,51 +182,43 @@ public:
bool runOnMachineFunction(MachineFunction &MF) override;
private:
typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap;
/// \brief Returns a distance between two instructions inside one basic block.
/// Negative result means, that instructions occur in reverse order.
int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
/// \brief Choose the best \p LEA instruction from the \p List to replace
/// address calculation in \p MI instruction. Return the address displacement
/// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift
/// and \p Dist.
/// and the distance between \p MI and the choosen \p BestLEA in
/// \p AddrDispShift and \p Dist.
bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
const MachineInstr &MI, MachineInstr *&LEA,
const MachineInstr &MI, MachineInstr *&BestLEA,
int64_t &AddrDispShift, int &Dist);
/// \brief Returns true if two machine operand are identical and they are not
/// physical registers.
bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2);
/// \brief Returns true if the instruction is LEA.
bool isLEA(const MachineInstr &MI);
/// \brief Returns the difference between addresses' displacements of \p MI1
/// and \p MI2. The numbers of the first memory operands for the instructions
/// are specified through \p N1 and \p N2.
int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
const MachineInstr &MI2, unsigned N2) const;
/// \brief Returns true if the \p Last LEA instruction can be replaced by the
/// \p First. The difference between displacements of the addresses calculated
/// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
/// replacement of the \p Last LEA's uses with the \p First's def register.
bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
int64_t &AddrDispShift);
/// \brief Returns true if two instructions have memory operands that only
/// differ by displacement. The numbers of the first memory operands for both
/// instructions are specified through \p N1 and \p N2. The address
/// displacement is returned through AddrDispShift.
bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1,
const MachineInstr &MI2, unsigned N2,
int64_t &AddrDispShift);
int64_t &AddrDispShift) const;
/// \brief Find all LEA instructions in the basic block. Also, assign position
/// numbers to all instructions in the basic block to speed up calculation of
/// distance between them.
void findLEAs(const MachineBasicBlock &MBB,
SmallVectorImpl<MachineInstr *> &List);
void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
/// \brief Removes redundant address calculations.
bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List);
bool removeRedundantAddrCalc(MemOpMap &LEAs);
/// \brief Removes LEAs which calculate similar addresses.
bool removeRedundantLEAs(SmallVectorImpl<MachineInstr *> &List);
bool removeRedundantLEAs(MemOpMap &LEAs);
DenseMap<const MachineInstr *, unsigned> InstrPos;
@ -137,22 +256,20 @@ int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
// 4) The LEA should be as close to MI as possible, and prior to it if
// possible.
bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
const MachineInstr &MI, MachineInstr *&LEA,
const MachineInstr &MI,
MachineInstr *&BestLEA,
int64_t &AddrDispShift, int &Dist) {
const MachineFunction *MF = MI.getParent()->getParent();
const MCInstrDesc &Desc = MI.getDesc();
int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
X86II::getOperandBias(Desc);
LEA = nullptr;
BestLEA = nullptr;
// Loop over all LEA instructions.
for (auto DefMI : List) {
int64_t AddrDispShiftTemp = 0;
// Compare instructions memory operands.
if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp))
continue;
// Get new address displacement.
int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
// Make sure address displacement fits 4 bytes.
if (!isInt<32>(AddrDispShiftTemp))
@ -174,14 +291,14 @@ bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
int DistTemp = calcInstrDist(*DefMI, MI);
assert(DistTemp != 0 &&
"The distance between two different instructions cannot be zero");
if (DistTemp > 0 || LEA == nullptr) {
if (DistTemp > 0 || BestLEA == nullptr) {
// Do not update return LEA, if the current one provides a displacement
// which fits in 1 byte, while the new candidate does not.
if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
isInt<8>(AddrDispShift))
continue;
LEA = DefMI;
BestLEA = DefMI;
AddrDispShift = AddrDispShiftTemp;
Dist = DistTemp;
}
@ -191,20 +308,25 @@ bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
break;
}
return LEA != nullptr;
return BestLEA != nullptr;
}
bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1,
const MachineOperand &MO2) {
return MO1.isIdenticalTo(MO2) &&
(!MO1.isReg() ||
!TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
}
bool OptimizeLEAPass::isLEA(const MachineInstr &MI) {
unsigned Opcode = MI.getOpcode();
return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
// Get the difference between the addresses' displacements of the two
// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
// passed through \p N1 and \p N2.
int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
const MachineInstr &MI2,
unsigned N2) const {
// Address displacement operands may differ by a constant.
const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
if (Op1.isImm() && Op2.isImm())
return Op1.getImm() - Op2.getImm();
else if (Op1.isGlobal() && Op2.isGlobal() &&
Op1.getGlobal() == Op2.getGlobal())
return Op1.getOffset() - Op2.getOffset();
else
llvm_unreachable("Invalid address displacement operand");
}
// Check that the Last LEA can be replaced by the First LEA. To be so,
@ -215,13 +337,12 @@ bool OptimizeLEAPass::isLEA(const MachineInstr &MI) {
// register is used only as address base.
bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
const MachineInstr &Last,
int64_t &AddrDispShift) {
int64_t &AddrDispShift) const {
assert(isLEA(First) && isLEA(Last) &&
"The function works only with LEA instructions");
// Compare instructions' memory operands.
if (!isSimilarMemOp(Last, 1, First, 1, AddrDispShift))
return false;
// Get new address displacement.
AddrDispShift = getAddrDispShift(Last, 1, First, 1);
// Make sure that LEA def registers belong to the same class. There may be
// instructions (like MOV8mr_NOREX) which allow a limited set of registers to
@ -270,36 +391,7 @@ bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
return true;
}
// Check if MI1 and MI2 have memory operands which represent addresses that
// differ only by displacement.
bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1,
const MachineInstr &MI2, unsigned N2,
int64_t &AddrDispShift) {
// Address base, scale, index and segment operands must be identical.
static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt,
X86::AddrIndexReg, X86::AddrSegmentReg};
for (auto &N : IdenticalOpNums)
if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N)))
return false;
// Address displacement operands may differ by a constant.
const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp);
const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp);
if (!isIdenticalOp(*Op1, *Op2)) {
if (Op1->isImm() && Op2->isImm())
AddrDispShift = Op1->getImm() - Op2->getImm();
else if (Op1->isGlobal() && Op2->isGlobal() &&
Op1->getGlobal() == Op2->getGlobal())
AddrDispShift = Op1->getOffset() - Op2->getOffset();
else
return false;
}
return true;
}
void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
SmallVectorImpl<MachineInstr *> &List) {
void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
unsigned Pos = 0;
for (auto &MI : MBB) {
// Assign the position number to the instruction. Note that we are going to
@ -310,19 +402,18 @@ void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
InstrPos[&MI] = Pos += 2;
if (isLEA(MI))
List.push_back(const_cast<MachineInstr *>(&MI));
LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
}
}
// Try to find load and store instructions which recalculate addresses already
// calculated by some LEA and replace their memory operands with its def
// register.
bool OptimizeLEAPass::removeRedundantAddrCalc(
const SmallVectorImpl<MachineInstr *> &List) {
bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
bool Changed = false;
assert(List.size() > 0);
MachineBasicBlock *MBB = List[0]->getParent();
assert(!LEAs.empty());
MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
// Process all instructions in basic block.
for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
@ -347,7 +438,8 @@ bool OptimizeLEAPass::removeRedundantAddrCalc(
MachineInstr *DefMI;
int64_t AddrDispShift;
int Dist;
if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist))
if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift,
Dist))
continue;
// If LEA occurs before current instruction, we can freely replace
@ -393,75 +485,80 @@ bool OptimizeLEAPass::removeRedundantAddrCalc(
}
// Try to find similar LEAs in the list and replace one with another.
bool
OptimizeLEAPass::removeRedundantLEAs(SmallVectorImpl<MachineInstr *> &List) {
bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
bool Changed = false;
// Loop over all LEA pairs.
auto I1 = List.begin();
while (I1 != List.end()) {
MachineInstr &First = **I1;
auto I2 = std::next(I1);
while (I2 != List.end()) {
MachineInstr &Last = **I2;
int64_t AddrDispShift;
// Loop over all entries in the table.
for (auto &E : LEAs) {
auto &List = E.second;
// LEAs should be in occurence order in the list, so we can freely
// replace later LEAs with earlier ones.
assert(calcInstrDist(First, Last) > 0 &&
"LEAs must be in occurence order in the list");
// Loop over all LEA pairs.
auto I1 = List.begin();
while (I1 != List.end()) {
MachineInstr &First = **I1;
auto I2 = std::next(I1);
while (I2 != List.end()) {
MachineInstr &Last = **I2;
int64_t AddrDispShift;
// Check that the Last LEA instruction can be replaced by the First.
if (!isReplaceable(First, Last, AddrDispShift)) {
++I2;
continue;
// LEAs should be in occurence order in the list, so we can freely
// replace later LEAs with earlier ones.
assert(calcInstrDist(First, Last) > 0 &&
"LEAs must be in occurence order in the list");
// Check that the Last LEA instruction can be replaced by the First.
if (!isReplaceable(First, Last, AddrDispShift)) {
++I2;
continue;
}
// Loop over all uses of the Last LEA and update their operands. Note
// that the correctness of this has already been checked in the
// isReplaceable function.
for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()),
UE = MRI->use_end();
UI != UE;) {
MachineOperand &MO = *UI++;
MachineInstr &MI = *MO.getParent();
// Get the number of the first memory operand.
const MCInstrDesc &Desc = MI.getDesc();
int MemOpNo =
X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
X86II::getOperandBias(Desc);
// Update address base.
MO.setReg(First.getOperand(0).getReg());
// Update address disp.
MachineOperand *Op = &MI.getOperand(MemOpNo + X86::AddrDisp);
if (Op->isImm())
Op->setImm(Op->getImm() + AddrDispShift);
else if (Op->isGlobal())
Op->setOffset(Op->getOffset() + AddrDispShift);
else
llvm_unreachable("Invalid address displacement operand");
}
// Since we can possibly extend register lifetime, clear kill flags.
MRI->clearKillFlags(First.getOperand(0).getReg());
++NumRedundantLEAs;
DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump(););
// By this moment, all of the Last LEA's uses must be replaced. So we
// can freely remove it.
assert(MRI->use_empty(Last.getOperand(0).getReg()) &&
"The LEA's def register must have no uses");
Last.eraseFromParent();
// Erase removed LEA from the list.
I2 = List.erase(I2);
Changed = true;
}
// Loop over all uses of the Last LEA and update their operands. Note that
// the correctness of this has already been checked in the isReplaceable
// function.
for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()),
UE = MRI->use_end();
UI != UE;) {
MachineOperand &MO = *UI++;
MachineInstr &MI = *MO.getParent();
// Get the number of the first memory operand.
const MCInstrDesc &Desc = MI.getDesc();
int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
X86II::getOperandBias(Desc);
// Update address base.
MO.setReg(First.getOperand(0).getReg());
// Update address disp.
MachineOperand *Op = &MI.getOperand(MemOpNo + X86::AddrDisp);
if (Op->isImm())
Op->setImm(Op->getImm() + AddrDispShift);
else if (Op->isGlobal())
Op->setOffset(Op->getOffset() + AddrDispShift);
else
llvm_unreachable("Invalid address displacement operand");
}
// Since we can possibly extend register lifetime, clear kill flags.
MRI->clearKillFlags(First.getOperand(0).getReg());
++NumRedundantLEAs;
DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump(););
// By this moment, all of the Last LEA's uses must be replaced. So we can
// freely remove it.
assert(MRI->use_empty(Last.getOperand(0).getReg()) &&
"The LEA's def register must have no uses");
Last.eraseFromParent();
// Erase removed LEA from the list.
I2 = List.erase(I2);
Changed = true;
++I1;
}
++I1;
}
return Changed;
@ -480,7 +577,7 @@ bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
// Process all basic blocks.
for (auto &MBB : MF) {
SmallVector<MachineInstr *, 16> LEAs;
MemOpMap LEAs;
InstrPos.clear();
// Find all LEA instructions in basic block.