SchedDFS: Initial support for nested subtrees.

This is mostly refactoring, along with adding an instruction count
within the subtrees and ensuring we only look at data edges.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173420 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrew Trick 2013-01-25 06:02:44 +00:00
parent baf868b9b8
commit bfb8223e2b
2 changed files with 90 additions and 42 deletions

View File

@ -27,6 +27,9 @@ class SUnit;
/// \brief Represent the ILP of the subDAG rooted at a DAG node.
///
/// ILPValues summarize the DAG subtree rooted at each node. ILPValues are
/// valid for all nodes regardless of their subtree membership.
///
/// When computed using bottom-up DFS, this metric assumes that the DAG is a
/// forest of trees with roots at the bottom of the schedule branching upward.
struct ILPValue {
@ -62,19 +65,23 @@ struct ILPValue {
};
/// \brief Compute the values of each DAG node for various metrics during DFS.
///
/// ILPValues summarize the DAG subtree rooted at each node up to
/// SubtreeLimit. ILPValues are also valid for interior nodes of a subtree, not
/// just the root.
class SchedDFSResult {
friend class SchedDFSImpl;
static const unsigned InvalidSubtreeID = ~0u;
/// \brief Per-SUnit data computed during DFS for various metrics.
///
/// A node's SubtreeID is set to itself when it is visited to indicate that it
/// is the root of a subtree. Later it is set to its parent to indicate an
/// interior node. Finally, it is set to a representative subtree ID during
/// finalization.
struct NodeData {
unsigned InstrCount;
unsigned SubInstrCount;
unsigned SubtreeID;
NodeData(): InstrCount(0), SubtreeID(0) {}
NodeData(): InstrCount(0), SubInstrCount(0), SubtreeID(InvalidSubtreeID) {}
};
/// \brief Record a connection between subtrees and the connection level.
@ -102,6 +109,11 @@ public:
SchedDFSResult(bool IsBU, unsigned lim)
: IsBottomUp(IsBU), SubtreeLimit(lim) {}
/// \brief Return true if this DFSResult is uninitialized.
///
/// resize() initializes DFSResult, while compute() populates it.
bool empty() const { return DFSData.empty(); }
/// \brief Clear the results.
void clear() {
DFSData.clear();

View File

@ -1021,35 +1021,56 @@ class SchedDFSImpl {
public:
SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSData.size()) {}
/// SubtreID is initialized to zero, set to itself to flag the root of a
/// subtree, set to the parent to indicate an interior node,
/// then set to a representative subtree ID during finalization.
/// Return true if this node been visited by the DFS traversal.
///
/// During visitPostorderNode the Node's SubtreeID is assigned to the Node
/// ID. Later, SubtreeID is updated but remains valid.
bool isVisited(const SUnit *SU) const {
return R.DFSData[SU->NodeNum].SubtreeID;
return R.DFSData[SU->NodeNum].SubtreeID != SchedDFSResult::InvalidSubtreeID;
}
/// Initialize this node's instruction count. We don't need to flag the node
/// visited until visitPostorder because the DAG cannot have cycles.
void visitPreorder(const SUnit *SU) {
R.DFSData[SU->NodeNum].InstrCount = SU->getInstr()->isTransient() ? 0 : 1;
R.DFSData[SU->NodeNum].SubInstrCount = R.DFSData[SU->NodeNum].InstrCount;
}
/// Mark this node as either the root of a subtree or an interior
/// node. Increment the parent node's instruction count.
void visitPostorder(const SUnit *SU, const SDep *PredDep, const SUnit *Parent) {
/// Called once for each tree edge after calling visitPostOrderNode on the
/// predecessor. Increment the parent node's instruction count and
/// preemptively join this subtree to its parent's if it is small enough.
void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
R.DFSData[Succ->NodeNum].InstrCount
+= R.DFSData[PredDep.getSUnit()->NodeNum].InstrCount;
joinPredSubtree(PredDep, Succ);
}
/// Called once for each node after all predecessors are visited. Revisit this
/// node's predecessors and potentially join them now that we know the ILP of
/// the other predecessors.
void visitPostorderNode(const SUnit *SU) {
// Mark this node as the root of a subtree. It may be joined with its
// successors later.
R.DFSData[SU->NodeNum].SubtreeID = SU->NodeNum;
if (!Parent)
return;
assert(PredDep && "PredDep required for non-root node");
joinPredSubtree(*PredDep, Parent);
// If any predecessors are still in their own subtree, they either cannot be
// joined or are large enough to remain separate. If this parent node's
// total instruction count is not greater than a child subtree by at least
// the subtree limit, then try to join it now since splitting subtrees is
// only useful if multiple high-pressure paths are possible.
unsigned InstrCount = R.DFSData[SU->NodeNum].InstrCount;
for (SUnit::const_pred_iterator
PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
if (PI->getKind() != SDep::Data)
continue;
unsigned PredNum = PI->getSUnit()->NodeNum;
if ((InstrCount - R.DFSData[PredNum].InstrCount) < R.SubtreeLimit)
joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
}
}
/// Determine whether the DFS cross edge should be considered a subtree edge
/// or a connection between subtrees.
void visitCross(const SDep &PredDep, const SUnit *Succ) {
joinPredSubtree(PredDep, Succ);
/// Add a connection for cross edges.
void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
}
@ -1079,32 +1100,35 @@ public:
}
protected:
void joinPredSubtree(const SDep &PredDep, const SUnit *Succ) {
// Join the child to its parent if they are connected via data dependence.
if (PredDep.getKind() != SDep::Data)
return;
/// Join the predecessor subtree with the successor that is its DFS
/// parent. Apply some heuristics before joining.
bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
bool CheckLimit = true) {
assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
// Check if the predecessor is already joined.
const SUnit *PredSU = PredDep.getSUnit();
unsigned PredNum = PredSU->NodeNum;
if (R.DFSData[PredNum].SubtreeID != PredNum)
return false;
// Four is the magic number of successors before a node is considered a
// pinch point.
unsigned NumDataSucs = 0;
const SUnit *PredSU = PredDep.getSUnit();
for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
SE = PredSU->Succs.end(); SI != SE; ++SI) {
if (SI->getKind() == SDep::Data) {
if (++NumDataSucs >= 4)
return;
return false;
}
}
// If this is a cross edge to a root, join the subtrees. This happens when
// the root was first reached by a non-data dependence.
unsigned NodeNum = PredSU->NodeNum;
unsigned PredCnt = R.DFSData[NodeNum].InstrCount;
if (R.DFSData[NodeNum].SubtreeID == NodeNum && PredCnt < R.SubtreeLimit) {
R.DFSData[NodeNum].SubtreeID = Succ->NodeNum;
R.DFSData[Succ->NodeNum].InstrCount += PredCnt;
SubtreeClasses.join(Succ->NodeNum, NodeNum);
return;
}
if (CheckLimit && R.DFSData[PredNum].SubInstrCount > R.SubtreeLimit)
return false;
R.DFSData[PredNum].SubtreeID = Succ->NodeNum;
R.DFSData[Succ->NodeNum].SubInstrCount += R.DFSData[PredNum].SubInstrCount;
SubtreeClasses.join(Succ->NodeNum, PredNum);
return true;
}
/// Called by finalize() to record a connection between trees.
@ -1153,6 +1177,15 @@ public:
};
} // anonymous
static bool hasDataSucc(const SUnit *SU) {
for (SUnit::const_succ_iterator
SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
if (SI->getKind() == SDep::Data)
return true;
}
return false;
}
/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
/// search from this root.
void SchedDFSResult::compute(ArrayRef<SUnit *> Roots) {
@ -1170,11 +1203,12 @@ void SchedDFSResult::compute(ArrayRef<SUnit *> Roots) {
while (DFS.getPred() != DFS.getPredEnd()) {
const SDep &PredDep = *DFS.getPred();
DFS.advance();
// If the pred is already valid, skip it. We may preorder visit a node
// with InstrCount==0 more than once, but it won't affect heuristics
// because we don't care about cross edges to leaf copies.
// Ignore non-data edges.
if (PredDep.getKind() != SDep::Data)
continue;
// An already visited edge is a cross edge, assuming an acyclic DAG.
if (Impl.isVisited(PredDep.getSUnit())) {
Impl.visitCross(PredDep, DFS.getCurr());
Impl.visitCrossEdge(PredDep, DFS.getCurr());
continue;
}
Impl.visitPreorder(PredDep.getSUnit());
@ -1183,7 +1217,9 @@ void SchedDFSResult::compute(ArrayRef<SUnit *> Roots) {
// Visit the top of the stack in postorder and backtrack.
const SUnit *Child = DFS.getCurr();
const SDep *PredDep = DFS.backtrack();
Impl.visitPostorder(Child, PredDep, PredDep ? DFS.getCurr() : 0);
Impl.visitPostorderNode(Child);
if (PredDep)
Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
if (DFS.isComplete())
break;
}