Remove trailing whitespace.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170991 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Craig Topper 2012-12-22 19:15:35 +00:00
parent 8a8413d75c
commit c4265e1d68

View File

@ -58,7 +58,7 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
// from [0-C].
@ -84,7 +84,7 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
// Determine which operand has more trailing zeros, and use that
@ -266,11 +266,11 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Elt = CDS->getElementAsInteger(i);
KnownZero &= ~Elt;
KnownOne &= Elt;
KnownOne &= Elt;
}
return;
}
// The address of an aligned GlobalValue has trailing zeros.
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
unsigned Align = GV->getAlignment();
@ -306,7 +306,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
}
return;
}
if (Argument *A = dyn_cast<Argument>(V)) {
unsigned Align = 0;
@ -345,9 +345,9 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
@ -357,9 +357,9 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::Or: {
ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
@ -369,9 +369,9 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::Xor: {
ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
@ -407,8 +407,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
@ -465,11 +465,11 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@ -486,7 +486,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
@ -498,10 +498,10 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
// Compute the new bits that are at the top now.
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
// high bits known zero.
@ -514,13 +514,13 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
// Compute the new bits that are at the top now.
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
KnownZero |= HighBits;
@ -564,7 +564,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
KnownOne |= ~LowBits;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
}
@ -611,7 +611,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
unsigned Align = AI->getAlignment();
if (Align == 0 && TD)
Align = TD->getABITypeAlignment(AI->getType()->getElementType());
if (Align > 0)
KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
break;
@ -648,7 +648,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
LocalKnownZero.countTrailingOnes()));
}
}
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
break;
}
@ -1073,7 +1073,7 @@ bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
const DataLayout *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
}
@ -1103,14 +1103,14 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
if (Depth == 6)
return 1; // Limit search depth.
Operator *U = dyn_cast<Operator>(V);
switch (Operator::getOpcode(V)) {
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
case Instruction::AShr: {
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
// ashr X, C -> adds C sign bits. Vectors too.
@ -1152,38 +1152,38 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
return std::min(Tmp, Tmp2);
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
return TyBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (KnownZero.isNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case Instruction::Sub:
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
if (CLHS->isNullValue()) {
@ -1193,26 +1193,26 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
return TyBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
if (KnownZero.isNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(U);
// Don't analyze large in-degree PHIs.
if (PN->getNumIncomingValues() > 4) break;
// Take the minimum of all incoming values. This can't infinitely loop
// because of our depth threshold.
Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
@ -1229,13 +1229,13 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
// case for targets like X86.
break;
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask;
ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
} else if (KnownOne.isNegative()) { // sign bit is 1;
@ -1244,7 +1244,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
// the number of identical bits in the top of the input value.
Mask = ~Mask;
@ -1272,7 +1272,7 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
if (Base == 0)
return false;
if (Base == 1) {
Multiple = V;
return true;
@ -1288,11 +1288,11 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
if (CI && CI->getZExtValue() % Base == 0) {
Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
return true;
return true;
}
if (Depth == MaxDepth) return false; // Limit search depth.
Operator *I = dyn_cast<Operator>(V);
if (!I) return false;
@ -1324,13 +1324,13 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
if (Constant *Op1C = dyn_cast<Constant>(Op1))
if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
if (Op1C->getType()->getPrimitiveSizeInBits() <
if (Op1C->getType()->getPrimitiveSizeInBits() <
MulC->getType()->getPrimitiveSizeInBits())
Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
if (Op1C->getType()->getPrimitiveSizeInBits() >
if (Op1C->getType()->getPrimitiveSizeInBits() >
MulC->getType()->getPrimitiveSizeInBits())
MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
// V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
Multiple = ConstantExpr::getMul(MulC, Op1C);
return true;
@ -1348,13 +1348,13 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
if (Constant *Op0C = dyn_cast<Constant>(Op0))
if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
if (Op0C->getType()->getPrimitiveSizeInBits() <
if (Op0C->getType()->getPrimitiveSizeInBits() <
MulC->getType()->getPrimitiveSizeInBits())
Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
if (Op0C->getType()->getPrimitiveSizeInBits() >
if (Op0C->getType()->getPrimitiveSizeInBits() >
MulC->getType()->getPrimitiveSizeInBits())
MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
// V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
Multiple = ConstantExpr::getMul(MulC, Op0C);
return true;
@ -1374,7 +1374,7 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
return false;
}
/// CannotBeNegativeZero - Return true if we can prove that the specified FP
/// CannotBeNegativeZero - Return true if we can prove that the specified FP
/// value is never equal to -0.0.
///
/// NOTE: this function will need to be revisited when we support non-default
@ -1383,7 +1383,7 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegZero();
if (Depth == 6)
return 1; // Limit search depth.
@ -1397,19 +1397,19 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
// (add x, 0.0) is guaranteed to return +0.0, not -0.0.
if (I->getOpcode() == Instruction::FAdd &&
isa<ConstantFP>(I->getOperand(1)) &&
isa<ConstantFP>(I->getOperand(1)) &&
cast<ConstantFP>(I->getOperand(1))->isNullValue())
return true;
// sitofp and uitofp turn into +0.0 for zero.
if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
return true;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
// sqrt(-0.0) = -0.0, no other negative results are possible.
if (II->getIntrinsicID() == Intrinsic::sqrt)
return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
if (const CallInst *CI = dyn_cast<CallInst>(I))
if (const Function *F = CI->getCalledFunction()) {
if (F->isDeclaration()) {
@ -1424,7 +1424,7 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
}
}
return false;
}
@ -1441,9 +1441,9 @@ Value *llvm::isBytewiseValue(Value *V) {
if (Constant *C = dyn_cast<Constant>(V))
if (C->isNullValue())
return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
// Constant float and double values can be handled as integer values if the
// corresponding integer value is "byteable". An important case is 0.0.
// corresponding integer value is "byteable". An important case is 0.0.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType()->isFloatTy())
V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
@ -1451,8 +1451,8 @@ Value *llvm::isBytewiseValue(Value *V) {
V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
// Don't handle long double formats, which have strange constraints.
}
// We can handle constant integers that are power of two in size and a
// We can handle constant integers that are power of two in size and a
// multiple of 8 bits.
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
unsigned Width = CI->getBitWidth();
@ -1466,7 +1466,7 @@ Value *llvm::isBytewiseValue(Value *V) {
Val2 = Val.lshr(NextWidth);
Val2 = Val2.trunc(Val.getBitWidth()/2);
Val = Val.trunc(Val.getBitWidth()/2);
// If the top/bottom halves aren't the same, reject it.
if (Val != Val2)
return 0;
@ -1474,7 +1474,7 @@ Value *llvm::isBytewiseValue(Value *V) {
return ConstantInt::get(V->getContext(), Val);
}
}
// A ConstantDataArray/Vector is splatable if all its members are equal and
// also splatable.
if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
@ -1482,11 +1482,11 @@ Value *llvm::isBytewiseValue(Value *V) {
Value *Val = isBytewiseValue(Elt);
if (!Val)
return 0;
for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
if (CA->getElementAsConstant(I) != Elt)
return 0;
return Val;
}
@ -1541,7 +1541,7 @@ static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
// the struct's elements had a value that was inserted directly. In the latter
// case, perhaps we can't determine each of the subelements individually, but
// we might be able to find the complete struct somewhere.
// Find the value that is at that particular spot
Value *V = FindInsertedValue(From, Idxs);
@ -1600,7 +1600,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
if (C == 0) return 0;
return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
}
if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
// Loop the indices for the insertvalue instruction in parallel with the
// requested indices
@ -1625,7 +1625,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
InsertBefore);
}
// This insert value inserts something else than what we are looking for.
// See if the (aggregrate) value inserted into has the value we are
// looking for, then.
@ -1640,26 +1640,26 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
makeArrayRef(req_idx, idx_range.end()),
InsertBefore);
}
if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
// If we're extracting a value from an aggregrate that was extracted from
// something else, we can extract from that something else directly instead.
// However, we will need to chain I's indices with the requested indices.
// Calculate the number of indices required
// Calculate the number of indices required
unsigned size = I->getNumIndices() + idx_range.size();
// Allocate some space to put the new indices in
SmallVector<unsigned, 5> Idxs;
Idxs.reserve(size);
// Add indices from the extract value instruction
Idxs.append(I->idx_begin(), I->idx_end());
// Add requested indices
Idxs.append(idx_range.begin(), idx_range.end());
assert(Idxs.size() == size
assert(Idxs.size() == size
&& "Number of indices added not correct?");
return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
}
// Otherwise, we don't know (such as, extracting from a function return value
@ -1675,21 +1675,21 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Operator *PtrOp = dyn_cast<Operator>(Ptr);
if (PtrOp == 0 || Ptr->getType()->isVectorTy())
return Ptr;
// Just look through bitcasts.
if (PtrOp->getOpcode() == Instruction::BitCast)
return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
// If this is a GEP with constant indices, we can look through it.
GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
++I, ++GTI) {
ConstantInt *OpC = cast<ConstantInt>(*I);
if (OpC->isZero()) continue;
// Handle a struct and array indices which add their offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
@ -1698,13 +1698,13 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Offset += OpC->getSExtValue()*Size;
}
}
// Re-sign extend from the pointer size if needed to get overflow edge cases
// right.
unsigned PtrSize = TD.getPointerSizeInBits();
if (PtrSize < 64)
Offset = SignExtend64(Offset, PtrSize);
return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
}
@ -1718,26 +1718,26 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// Look through bitcast instructions and geps.
V = V->stripPointerCasts();
// If the value is a GEP instructionor constant expression, treat it as an
// offset.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Make sure the index-ee is a pointer to array of i8.
PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
if (FirstIdx == 0 || !FirstIdx->isZero())
return false;
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
@ -1763,13 +1763,13 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
Str = "";
return true;
}
// Must be a Constant Array
const ConstantDataArray *Array =
dyn_cast<ConstantDataArray>(GV->getInitializer());
if (Array == 0 || !Array->isString())
return false;
// Get the number of elements in the array
uint64_t NumElts = Array->getType()->getArrayNumElements();
@ -1778,10 +1778,10 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
if (Offset > NumElts)
return false;
// Skip over 'offset' bytes.
Str = Str.substr(Offset);
if (TrimAtNul) {
// Trim off the \0 and anything after it. If the array is not nul
// terminated, we just return the whole end of string. The client may know
@ -1835,7 +1835,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
if (Len1 != Len2) return 0;
return Len1;
}
// Otherwise, see if we can read the string.
StringRef StrData;
if (!getConstantStringInfo(V, StrData))