mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-26 13:10:34 +00:00
introduce a new ConvertToScalarInfo struct to simplify
CanConvertToScalar/MergeInType. Eliminate a pointless LLVMContext argument to MergeInType. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101422 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
626f3d7a57
commit
c447207264
@ -49,6 +49,8 @@ STATISTIC(NumConverted, "Number of aggregates converted to scalar");
|
||||
STATISTIC(NumGlobals, "Number of allocas copied from constant global");
|
||||
|
||||
namespace {
|
||||
struct ConvertToScalarInfo;
|
||||
|
||||
struct SROA : public FunctionPass {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
explicit SROA(signed T = -1) : FunctionPass(&ID) {
|
||||
@ -130,8 +132,8 @@ namespace {
|
||||
void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
|
||||
SmallVector<AllocaInst*, 32> &NewElts);
|
||||
|
||||
bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
|
||||
bool &SawVec, uint64_t Offset, unsigned AllocaSize);
|
||||
bool CanConvertToScalar(Value *V, ConvertToScalarInfo &ConvertInfo,
|
||||
uint64_t Offset);
|
||||
void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
|
||||
Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
|
||||
uint64_t Offset, IRBuilder<> &Builder);
|
||||
@ -216,6 +218,29 @@ static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
|
||||
return false;
|
||||
}
|
||||
|
||||
namespace {
|
||||
struct ConvertToScalarInfo {
|
||||
/// AllocaSize - The size of the alloca being considered.
|
||||
unsigned AllocaSize;
|
||||
|
||||
bool IsNotTrivial;
|
||||
const Type *VectorTy;
|
||||
bool HadAVector;
|
||||
|
||||
explicit ConvertToScalarInfo(unsigned Size) : AllocaSize(Size) {
|
||||
IsNotTrivial = false;
|
||||
VectorTy = 0;
|
||||
HadAVector = false;
|
||||
}
|
||||
|
||||
bool shouldConvertToVector() const {
|
||||
return VectorTy && VectorTy->isVectorTy() && HadAVector;
|
||||
}
|
||||
};
|
||||
} // end anonymous namespace.
|
||||
|
||||
|
||||
|
||||
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
|
||||
// which runs on all of the malloc/alloca instructions in the function, removing
|
||||
// them if they are only used by getelementptr instructions.
|
||||
@ -239,6 +264,7 @@ bool SROA::performScalarRepl(Function &F) {
|
||||
// with unused elements.
|
||||
if (AI->use_empty()) {
|
||||
AI->eraseFromParent();
|
||||
Changed = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -290,11 +316,8 @@ bool SROA::performScalarRepl(Function &F) {
|
||||
// promoted itself. If so, we don't want to transform it needlessly. Note
|
||||
// that we can't just check based on the type: the alloca may be of an i32
|
||||
// but that has pointer arithmetic to set byte 3 of it or something.
|
||||
bool IsNotTrivial = false;
|
||||
const Type *VectorTy = 0;
|
||||
bool HadAVector = false;
|
||||
if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
|
||||
0, unsigned(AllocaSize)) && IsNotTrivial) {
|
||||
ConvertToScalarInfo ConvertInfo((unsigned)AllocaSize);
|
||||
if (CanConvertToScalar(AI, ConvertInfo, 0) && ConvertInfo.IsNotTrivial) {
|
||||
AllocaInst *NewAI;
|
||||
// If we were able to find a vector type that can handle this with
|
||||
// insert/extract elements, and if there was at least one use that had
|
||||
@ -302,12 +325,13 @@ bool SROA::performScalarRepl(Function &F) {
|
||||
// random stuff that doesn't use vectors (e.g. <9 x double>) because then
|
||||
// we just get a lot of insert/extracts. If at least one vector is
|
||||
// involved, then we probably really do have a union of vector/array.
|
||||
if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
|
||||
if (ConvertInfo.shouldConvertToVector()) {
|
||||
DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
|
||||
<< *VectorTy << '\n');
|
||||
<< *ConvertInfo.VectorTy << '\n');
|
||||
|
||||
// Create and insert the vector alloca.
|
||||
NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
|
||||
NewAI = new AllocaInst(ConvertInfo.VectorTy, 0, "",
|
||||
AI->getParent()->begin());
|
||||
ConvertUsesToScalar(AI, NewAI, 0);
|
||||
} else {
|
||||
DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
|
||||
@ -1185,45 +1209,49 @@ bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
|
||||
/// 2) A fully general blob of memory, which we turn into some (potentially
|
||||
/// large) integer type with extract and insert operations where the loads
|
||||
/// and stores would mutate the memory.
|
||||
static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
|
||||
unsigned AllocaSize, const TargetData &TD,
|
||||
LLVMContext &Context) {
|
||||
static void MergeInType(const Type *In, uint64_t Offset,
|
||||
ConvertToScalarInfo &ConvertInfo, const TargetData &TD){
|
||||
// Remember if we saw a vector type.
|
||||
ConvertInfo.HadAVector |= In->isVectorTy();
|
||||
|
||||
if (ConvertInfo.VectorTy && ConvertInfo.VectorTy->isVoidTy())
|
||||
return;
|
||||
|
||||
// If this could be contributing to a vector, analyze it.
|
||||
if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
|
||||
|
||||
// If the In type is a vector that is the same size as the alloca, see if it
|
||||
// matches the existing VecTy.
|
||||
if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
|
||||
if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
|
||||
// If we're storing/loading a vector of the right size, allow it as a
|
||||
// vector. If this the first vector we see, remember the type so that
|
||||
// we know the element size.
|
||||
if (VecTy == 0)
|
||||
VecTy = VInTy;
|
||||
return;
|
||||
}
|
||||
} else if (In->isFloatTy() || In->isDoubleTy() ||
|
||||
(In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
|
||||
isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
|
||||
// If we're accessing something that could be an element of a vector, see
|
||||
// if the implied vector agrees with what we already have and if Offset is
|
||||
// compatible with it.
|
||||
unsigned EltSize = In->getPrimitiveSizeInBits()/8;
|
||||
if (Offset % EltSize == 0 &&
|
||||
AllocaSize % EltSize == 0 &&
|
||||
(VecTy == 0 ||
|
||||
cast<VectorType>(VecTy)->getElementType()
|
||||
->getPrimitiveSizeInBits()/8 == EltSize)) {
|
||||
if (VecTy == 0)
|
||||
VecTy = VectorType::get(In, AllocaSize/EltSize);
|
||||
return;
|
||||
}
|
||||
// If the In type is a vector that is the same size as the alloca, see if it
|
||||
// matches the existing VecTy.
|
||||
if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
|
||||
if (VInTy->getBitWidth()/8 == ConvertInfo.AllocaSize && Offset == 0) {
|
||||
// If we're storing/loading a vector of the right size, allow it as a
|
||||
// vector. If this the first vector we see, remember the type so that
|
||||
// we know the element size.
|
||||
if (ConvertInfo.VectorTy == 0)
|
||||
ConvertInfo.VectorTy = VInTy;
|
||||
return;
|
||||
}
|
||||
} else if (In->isFloatTy() || In->isDoubleTy() ||
|
||||
(In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
|
||||
isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
|
||||
// If we're accessing something that could be an element of a vector, see
|
||||
// if the implied vector agrees with what we already have and if Offset is
|
||||
// compatible with it.
|
||||
unsigned EltSize = In->getPrimitiveSizeInBits()/8;
|
||||
if (Offset % EltSize == 0 &&
|
||||
ConvertInfo.AllocaSize % EltSize == 0 &&
|
||||
(ConvertInfo.VectorTy == 0 ||
|
||||
cast<VectorType>(ConvertInfo.VectorTy)->getElementType()
|
||||
->getPrimitiveSizeInBits()/8 == EltSize)) {
|
||||
if (ConvertInfo.VectorTy == 0)
|
||||
ConvertInfo.VectorTy = VectorType::get(In,
|
||||
ConvertInfo.AllocaSize/EltSize);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Otherwise, we have a case that we can't handle with an optimized vector
|
||||
// form. We can still turn this into a large integer.
|
||||
VecTy = Type::getVoidTy(Context);
|
||||
ConvertInfo.VectorTy = Type::getVoidTy(In->getContext());
|
||||
}
|
||||
|
||||
/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
|
||||
@ -1235,9 +1263,8 @@ static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
|
||||
///
|
||||
/// If we see at least one access to the value that is as a vector type, set the
|
||||
/// SawVec flag.
|
||||
bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
|
||||
bool &SawVec, uint64_t Offset,
|
||||
unsigned AllocaSize) {
|
||||
bool SROA::CanConvertToScalar(Value *V, ConvertToScalarInfo &ConvertInfo,
|
||||
uint64_t Offset) {
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
|
||||
Instruction *User = cast<Instruction>(*UI);
|
||||
|
||||
@ -1245,26 +1272,21 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
|
||||
// Don't break volatile loads.
|
||||
if (LI->isVolatile())
|
||||
return false;
|
||||
MergeInType(LI->getType(), Offset, VecTy,
|
||||
AllocaSize, *TD, V->getContext());
|
||||
SawVec |= LI->getType()->isVectorTy();
|
||||
MergeInType(LI->getType(), Offset, ConvertInfo, *TD);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
||||
// Storing the pointer, not into the value?
|
||||
if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
|
||||
MergeInType(SI->getOperand(0)->getType(), Offset,
|
||||
VecTy, AllocaSize, *TD, V->getContext());
|
||||
SawVec |= SI->getOperand(0)->getType()->isVectorTy();
|
||||
if (SI->getOperand(0) == V || SI->isVolatile()) return false;
|
||||
MergeInType(SI->getOperand(0)->getType(), Offset, ConvertInfo, *TD);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
|
||||
if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
|
||||
AllocaSize))
|
||||
if (!CanConvertToScalar(BCI, ConvertInfo, Offset))
|
||||
return false;
|
||||
IsNotTrivial = true;
|
||||
ConvertInfo.IsNotTrivial = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -1278,10 +1300,9 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
|
||||
uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
|
||||
&Indices[0], Indices.size());
|
||||
// See if all uses can be converted.
|
||||
if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
|
||||
AllocaSize))
|
||||
if (!CanConvertToScalar(GEP, ConvertInfo, Offset+GEPOffset))
|
||||
return false;
|
||||
IsNotTrivial = true;
|
||||
ConvertInfo.IsNotTrivial = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -1291,7 +1312,7 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
|
||||
// Store of constant value and constant size.
|
||||
if (isa<ConstantInt>(MSI->getValue()) &&
|
||||
isa<ConstantInt>(MSI->getLength())) {
|
||||
IsNotTrivial = true;
|
||||
ConvertInfo.IsNotTrivial = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
@ -1300,8 +1321,8 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
|
||||
// can handle it like a load or store of the scalar type.
|
||||
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
|
||||
if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
|
||||
if (Len->getZExtValue() == AllocaSize && Offset == 0) {
|
||||
IsNotTrivial = true;
|
||||
if (Len->getZExtValue() == ConvertInfo.AllocaSize && Offset == 0) {
|
||||
ConvertInfo.IsNotTrivial = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user