[LoopVectorize] Use MapVector rather than DenseMap for MinBWs.

The order in which instructions are truncated in truncateToMinimalBitwidths
effects code generation. Switch to a map with a determinisic order, since the
iteration order over a DenseMap is not defined.

This code is not hot, so the difference in container performance isn't
interesting.

Many thanks to David Blaikie for making me aware of MapVector!

Fixes PR25490.

Differential Revision: http://reviews.llvm.org/D14981



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254179 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Charlie Turner 2015-11-26 20:39:51 +00:00
parent d647d4ba0f
commit c8dc70b584
4 changed files with 62 additions and 7 deletions

View File

@ -15,6 +15,7 @@
#define LLVM_TRANSFORMS_UTILS_VECTORUTILS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
@ -121,7 +122,7 @@ Value *getSplatValue(Value *V);
///
/// If the optional TargetTransformInfo is provided, this function tries harder
/// to do less work by only looking at illegal types.
DenseMap<Instruction*, uint64_t>
MapVector<Instruction*, uint64_t>
computeMinimumValueSizes(ArrayRef<BasicBlock*> Blocks,
DemandedBits &DB,
const TargetTransformInfo *TTI=nullptr);

View File

@ -438,7 +438,7 @@ llvm::Value *llvm::getSplatValue(Value *V) {
return InsertEltInst->getOperand(1);
}
DenseMap<Instruction *, uint64_t>
MapVector<Instruction *, uint64_t>
llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
const TargetTransformInfo *TTI) {
@ -451,7 +451,7 @@ llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
SmallPtrSet<Value *, 16> Visited;
DenseMap<Value *, uint64_t> DBits;
SmallPtrSet<Instruction *, 4> InstructionSet;
DenseMap<Instruction *, uint64_t> MinBWs;
MapVector<Instruction *, uint64_t> MinBWs;
// Determine the roots. We work bottom-up, from truncs or icmps.
bool SeenExtFromIllegalType = false;
@ -497,7 +497,7 @@ llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
// If we encounter a type that is larger than 64 bits, we can't represent
// it so bail out.
if (DB.getDemandedBits(I).getBitWidth() > 64)
return DenseMap<Instruction *, uint64_t>();
return MapVector<Instruction *, uint64_t>();
uint64_t V = DB.getDemandedBits(I).getZExtValue();
DBits[Leader] |= V;

View File

@ -325,7 +325,7 @@ public:
// can be validly truncated to. The cost model has assumed this truncation
// will happen when vectorizing.
void vectorize(LoopVectorizationLegality *L,
DenseMap<Instruction*,uint64_t> MinimumBitWidths) {
MapVector<Instruction*,uint64_t> MinimumBitWidths) {
MinBWs = MinimumBitWidths;
Legal = L;
// Create a new empty loop. Unlink the old loop and connect the new one.
@ -546,7 +546,7 @@ protected:
/// Map of scalar integer values to the smallest bitwidth they can be legally
/// represented as. The vector equivalents of these values should be truncated
/// to this type.
DenseMap<Instruction*,uint64_t> MinBWs;
MapVector<Instruction*,uint64_t> MinBWs;
LoopVectorizationLegality *Legal;
// Record whether runtime check is added.
@ -1505,7 +1505,7 @@ public:
/// Map of scalar integer values to the smallest bitwidth they can be legally
/// represented as. The vector equivalents of these values should be truncated
/// to this type.
DenseMap<Instruction*,uint64_t> MinBWs;
MapVector<Instruction*,uint64_t> MinBWs;
/// The loop that we evaluate.
Loop *TheLoop;

View File

@ -0,0 +1,54 @@
; RUN: opt -S < %s -loop-vectorize -instcombine 2>&1 | FileCheck %s
target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
target triple = "aarch64"
;; See https://llvm.org/bugs/show_bug.cgi?id=25490
;; Due to the data structures used, the LLVM IR was not determinisic.
;; This test comes from the PR.
;; CHECK-LABEL: @test(
; CHECK: load <16 x i8>
; CHECK-NEXT: getelementptr
; CHECK-NEXT: bitcast
; CHECK-NEXT: load <16 x i8>
; CHECK-NEXT: zext <16 x i8>
; CHECK-NEXT: zext <16 x i8>
define void @test(i32 %n, i8* nocapture %a, i8* nocapture %b, i8* nocapture readonly %c) {
entry:
%cmp.28 = icmp eq i32 %n, 0
br i1 %cmp.28, label %for.cond.cleanup, label %for.body.preheader
for.body.preheader: ; preds = %entry
br label %for.body
for.cond.cleanup.loopexit: ; preds = %for.body
br label %for.cond.cleanup
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
ret void
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%arrayidx = getelementptr inbounds i8, i8* %c, i64 %indvars.iv
%0 = load i8, i8* %arrayidx, align 1
%conv = zext i8 %0 to i32
%arrayidx2 = getelementptr inbounds i8, i8* %a, i64 %indvars.iv
%1 = load i8, i8* %arrayidx2, align 1
%conv3 = zext i8 %1 to i32
%mul = mul nuw nsw i32 %conv3, %conv
%shr.26 = lshr i32 %mul, 8
%conv4 = trunc i32 %shr.26 to i8
store i8 %conv4, i8* %arrayidx2, align 1
%arrayidx8 = getelementptr inbounds i8, i8* %b, i64 %indvars.iv
%2 = load i8, i8* %arrayidx8, align 1
%conv9 = zext i8 %2 to i32
%mul10 = mul nuw nsw i32 %conv9, %conv
%shr11.27 = lshr i32 %mul10, 8
%conv12 = trunc i32 %shr11.27 to i8
store i8 %conv12, i8* %arrayidx8, align 1
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %n
br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body
}