Delete the LiveValues pass. I won't get get back to the project it

was started for in the foreseeable future.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126668 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2011-02-28 19:37:59 +00:00
parent bafd516d3e
commit c92383fd0d
6 changed files with 0 additions and 308 deletions

View File

@ -1,99 +0,0 @@
//===- LiveValues.h - Liveness information for LLVM IR Values. ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for the LLVM IR Value liveness
// analysis pass.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LIVEVALUES_H
#define LLVM_ANALYSIS_LIVEVALUES_H
#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
namespace llvm {
class DominatorTree;
class LoopInfo;
class Value;
/// LiveValues - Analysis that provides liveness information for
/// LLVM IR Values.
///
class LiveValues : public FunctionPass {
DominatorTree *DT;
LoopInfo *LI;
/// Memo - A bunch of state to be associated with a value.
///
struct Memo {
/// Used - The set of blocks which contain a use of the value.
///
SmallPtrSet<const BasicBlock *, 4> Used;
/// LiveThrough - A conservative approximation of the set of blocks in
/// which the value is live-through, meaning blocks properly dominated
/// by the definition, and from which blocks containing uses of the
/// value are reachable.
///
SmallPtrSet<const BasicBlock *, 4> LiveThrough;
/// Killed - A conservative approximation of the set of blocks in which
/// the value is used and not live-out.
///
SmallPtrSet<const BasicBlock *, 4> Killed;
};
/// Memos - Remembers the Memo for each Value. This is populated on
/// demand.
///
DenseMap<const Value *, Memo> Memos;
/// getMemo - Retrieve an existing Memo for the given value if one
/// is available, otherwise compute a new one.
///
Memo &getMemo(const Value *V);
/// compute - Compute a new Memo for the given value.
///
Memo &compute(const Value *V);
public:
static char ID;
LiveValues();
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual bool runOnFunction(Function &F);
virtual void releaseMemory();
/// isUsedInBlock - Test if the given value is used in the given block.
///
bool isUsedInBlock(const Value *V, const BasicBlock *BB);
/// isLiveThroughBlock - Test if the given value is known to be
/// live-through the given block, meaning that the block is properly
/// dominated by the value's definition, and there exists a block
/// reachable from it that contains a use. This uses a conservative
/// approximation that errs on the side of returning false.
///
bool isLiveThroughBlock(const Value *V, const BasicBlock *BB);
/// isKilledInBlock - Test if the given value is known to be killed in
/// the given block, meaning that the block contains a use of the value,
/// and no blocks reachable from the block contain a use. This uses a
/// conservative approximation that errs on the side of returning false.
///
bool isKilledInBlock(const Value *V, const BasicBlock *BB);
};
} // end namespace llvm
#endif

View File

@ -157,12 +157,6 @@ namespace llvm {
//
ModulePass *createSteensgaardPass();
//===--------------------------------------------------------------------===//
//
// createLiveValuesPass - This creates an instance of the LiveValues pass.
//
FunctionPass *createLiveValuesPass();
//===--------------------------------------------------------------------===//
//
/// createLazyValueInfoPass - This creates an instance of the LazyValueInfo

View File

@ -123,7 +123,6 @@ void initializeLintPass(PassRegistry&);
void initializeLiveDebugVariablesPass(PassRegistry&);
void initializeLiveIntervalsPass(PassRegistry&);
void initializeLiveStacksPass(PassRegistry&);
void initializeLiveValuesPass(PassRegistry&);
void initializeLiveVariablesPass(PassRegistry&);
void initializeLoaderPassPass(PassRegistry&);
void initializePathProfileLoaderPassPass(PassRegistry&);

View File

@ -84,7 +84,6 @@ namespace {
(void) llvm::createLCSSAPass();
(void) llvm::createLICMPass();
(void) llvm::createLazyValueInfoPass();
(void) llvm::createLiveValuesPass();
(void) llvm::createLoopDependenceAnalysisPass();
(void) llvm::createLoopExtractorPass();
(void) llvm::createLoopSimplifyPass();

View File

@ -43,7 +43,6 @@ void llvm::initializeAnalysis(PassRegistry &Registry) {
initializeLazyValueInfoPass(Registry);
initializeLibCallAliasAnalysisPass(Registry);
initializeLintPass(Registry);
initializeLiveValuesPass(Registry);
initializeLoopDependenceAnalysisPass(Registry);
initializeLoopInfoPass(Registry);
initializeMemDepPrinterPass(Registry);

View File

@ -1,200 +0,0 @@
//===- LiveValues.cpp - Liveness information for LLVM IR Values. ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the implementation for the LLVM IR Value liveness
// analysis pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LiveValues.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
using namespace llvm;
namespace llvm {
FunctionPass *createLiveValuesPass() { return new LiveValues(); }
}
char LiveValues::ID = 0;
INITIALIZE_PASS_BEGIN(LiveValues, "live-values",
"Value Liveness Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(LiveValues, "live-values",
"Value Liveness Analysis", false, true)
LiveValues::LiveValues() : FunctionPass(ID) {
initializeLiveValuesPass(*PassRegistry::getPassRegistry());
}
void LiveValues::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
bool LiveValues::runOnFunction(Function &F) {
DT = &getAnalysis<DominatorTree>();
LI = &getAnalysis<LoopInfo>();
// This pass' values are computed lazily, so there's nothing to do here.
return false;
}
void LiveValues::releaseMemory() {
Memos.clear();
}
/// isUsedInBlock - Test if the given value is used in the given block.
///
bool LiveValues::isUsedInBlock(const Value *V, const BasicBlock *BB) {
Memo &M = getMemo(V);
return M.Used.count(BB);
}
/// isLiveThroughBlock - Test if the given value is known to be
/// live-through the given block, meaning that the block is properly
/// dominated by the value's definition, and there exists a block
/// reachable from it that contains a use. This uses a conservative
/// approximation that errs on the side of returning false.
///
bool LiveValues::isLiveThroughBlock(const Value *V,
const BasicBlock *BB) {
Memo &M = getMemo(V);
return M.LiveThrough.count(BB);
}
/// isKilledInBlock - Test if the given value is known to be killed in
/// the given block, meaning that the block contains a use of the value,
/// and no blocks reachable from the block contain a use. This uses a
/// conservative approximation that errs on the side of returning false.
///
bool LiveValues::isKilledInBlock(const Value *V, const BasicBlock *BB) {
Memo &M = getMemo(V);
return M.Killed.count(BB);
}
/// getMemo - Retrieve an existing Memo for the given value if one
/// is available, otherwise compute a new one.
///
LiveValues::Memo &LiveValues::getMemo(const Value *V) {
DenseMap<const Value *, Memo>::iterator I = Memos.find(V);
if (I != Memos.end())
return I->second;
return compute(V);
}
/// getImmediateDominator - A handy utility for the specific DominatorTree
/// query that we need here.
///
static const BasicBlock *getImmediateDominator(const BasicBlock *BB,
const DominatorTree *DT) {
DomTreeNode *Node = DT->getNode(const_cast<BasicBlock *>(BB))->getIDom();
return Node ? Node->getBlock() : 0;
}
/// compute - Compute a new Memo for the given value.
///
LiveValues::Memo &LiveValues::compute(const Value *V) {
Memo &M = Memos[V];
// Determine the block containing the definition.
const BasicBlock *DefBB;
// Instructions define values with meaningful live ranges.
if (const Instruction *I = dyn_cast<Instruction>(V))
DefBB = I->getParent();
// Arguments can be analyzed as values defined in the entry block.
else if (const Argument *A = dyn_cast<Argument>(V))
DefBB = &A->getParent()->getEntryBlock();
// Constants and other things aren't meaningful here, so just
// return having computed an empty Memo so that we don't come
// here again. The assumption here is that client code won't
// be asking about such values very often.
else
return M;
// Determine if the value is defined inside a loop. This is used
// to track whether the value is ever used outside the loop, so
// it'll be set to null if the value is either not defined in a
// loop or used outside the loop in which it is defined.
const Loop *L = LI->getLoopFor(DefBB);
// Track whether the value is used anywhere outside of the block
// in which it is defined.
bool LiveOutOfDefBB = false;
// Examine each use of the value.
for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
I != E; ++I) {
const User *U = *I;
const BasicBlock *UseBB = cast<Instruction>(U)->getParent();
// Note the block in which this use occurs.
M.Used.insert(UseBB);
// If the use block doesn't have successors, the value can be
// considered killed.
if (succ_begin(UseBB) == succ_end(UseBB))
M.Killed.insert(UseBB);
// Observe whether the value is used outside of the loop in which
// it is defined. Switch to an enclosing loop if necessary.
for (; L; L = L->getParentLoop())
if (L->contains(UseBB))
break;
// Search for live-through blocks.
const BasicBlock *BB;
if (const PHINode *PHI = dyn_cast<PHINode>(U)) {
// For PHI nodes, start the search at the incoming block paired with the
// incoming value, which must be dominated by the definition.
unsigned Num = PHI->getIncomingValueNumForOperand(I.getOperandNo());
BB = PHI->getIncomingBlock(Num);
// A PHI-node use means the value is live-out of it's defining block
// even if that block also contains the only use.
LiveOutOfDefBB = true;
} else {
// Otherwise just start the search at the use.
BB = UseBB;
// Note if the use is outside the defining block.
LiveOutOfDefBB |= UseBB != DefBB;
}
// Climb the immediate dominator tree from the use to the definition
// and mark all intermediate blocks as live-through.
for (; BB != DefBB; BB = getImmediateDominator(BB, DT)) {
if (BB != UseBB && !M.LiveThrough.insert(BB))
break;
}
}
// If the value is defined inside a loop and is not live outside
// the loop, then each exit block of the loop in which the value
// is used is a kill block.
if (L) {
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
const BasicBlock *ExitingBlock = ExitingBlocks[i];
if (M.Used.count(ExitingBlock))
M.Killed.insert(ExitingBlock);
}
}
// If the value was never used outside the block in which it was
// defined, it's killed in that block.
if (!LiveOutOfDefBB)
M.Killed.insert(DefBB);
return M;
}