Remove DomSet completely. This concludes work on PR1171.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35775 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2007-04-08 21:30:05 +00:00
parent 3a37b6b19c
commit cd4abb7e6d
6 changed files with 6 additions and 252 deletions

View File

@ -10,12 +10,11 @@
// This file defines the following classes:
// 1. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
// and their immediate dominator.
// 2. DominatorSet: Calculates the [reverse] dominator set for a function
// 3. DominatorTree: Represent the ImmediateDominator as an explicit tree
// 2. DominatorTree: Represent the ImmediateDominator as an explicit tree
// structure.
// 4. ETForest: Efficient data structure for dominance comparisons and
// 3. ETForest: Efficient data structure for dominance comparisons and
// nearest-common-ancestor queries.
// 5. DominanceFrontier: Calculate and hold the dominance frontier for a
// 4. DominanceFrontier: Calculate and hold the dominance frontier for a
// function.
//
// These data structures are listed in increasing order of complexity. It
@ -176,126 +175,6 @@ private:
};
//===----------------------------------------------------------------------===//
/// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
/// function, that represents the blocks that dominate the block. If the block
/// is unreachable in this function, the set will be empty. This cannot happen
/// for reachable code, because every block dominates at least itself.
///
class DominatorSetBase : public DominatorBase {
public:
typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
// Map of dom sets
typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
protected:
DomSetMapType Doms;
public:
DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {}
virtual void releaseMemory() { Doms.clear(); }
// Accessor interface:
typedef DomSetMapType::const_iterator const_iterator;
typedef DomSetMapType::iterator iterator;
inline const_iterator begin() const { return Doms.begin(); }
inline iterator begin() { return Doms.begin(); }
inline const_iterator end() const { return Doms.end(); }
inline iterator end() { return Doms.end(); }
inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
inline iterator find(BasicBlock* B) { return Doms.find(B); }
/// getDominators - Return the set of basic blocks that dominate the specified
/// block.
///
inline const DomSetType &getDominators(BasicBlock *BB) const {
const_iterator I = find(BB);
assert(I != end() && "BB not in function!");
return I->second;
}
/// isReachable - Return true if the specified basicblock is reachable. If
/// the block is reachable, we have dominator set information for it.
///
bool isReachable(BasicBlock *BB) const {
return !getDominators(BB).empty();
}
/// dominates - Return true if A dominates B.
///
inline bool dominates(BasicBlock *A, BasicBlock *B) const {
return getDominators(B).count(A) != 0;
}
/// properlyDominates - Return true if A dominates B and A != B.
///
bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
return dominates(A, B) && A != B;
}
/// print - Convert to human readable form
///
virtual void print(std::ostream &OS, const Module* = 0) const;
void print(std::ostream *OS, const Module* M = 0) const {
if (OS) print(*OS, M);
}
/// dominates - Return true if A dominates B. This performs the special
/// checks necessary if A and B are in the same basic block.
///
bool dominates(Instruction *A, Instruction *B) const;
//===--------------------------------------------------------------------===//
// API to update (Post)DominatorSet information based on modifications to
// the CFG...
/// addBasicBlock - Call to update the dominator set with information about a
/// new block that was inserted into the function.
///
void addBasicBlock(BasicBlock *BB, const DomSetType &Dominators) {
assert(find(BB) == end() && "Block already in DominatorSet!");
Doms.insert(std::make_pair(BB, Dominators));
}
/// addDominator - If a new block is inserted into the CFG, then method may be
/// called to notify the blocks it dominates that it is in their set.
///
void addDominator(BasicBlock *BB, BasicBlock *NewDominator) {
iterator I = find(BB);
assert(I != end() && "BB is not in DominatorSet!");
I->second.insert(NewDominator);
}
};
//===-------------------------------------
/// DominatorSet Class - Concrete subclass of DominatorSetBase that is used to
/// compute a normal dominator set.
///
class DominatorSet : public DominatorSetBase {
public:
DominatorSet() : DominatorSetBase(false) {}
virtual bool runOnFunction(Function &F);
BasicBlock *getRoot() const {
assert(Roots.size() == 1 && "Should always have entry node!");
return Roots[0];
}
/// getAnalysisUsage - This simply provides a dominator set
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<ImmediateDominators>();
AU.setPreservesAll();
}
// stub - dummy function, just ignore it
static int stub;
};
//===----------------------------------------------------------------------===//
/// DominatorTree - Calculate the immediate dominator tree for a function.
///
@ -691,7 +570,4 @@ private:
} // End llvm namespace
// Make sure that any clients of this file link in Dominators.cpp
FORCE_DEFINING_FILE_TO_BE_LINKED(DominatorSet)
#endif

View File

@ -251,89 +251,6 @@ void ImmediateDominatorsBase::print(std::ostream &o, const Module* ) const {
o << "\n";
}
//===----------------------------------------------------------------------===//
// DominatorSet Implementation
//===----------------------------------------------------------------------===//
static RegisterPass<DominatorSet>
B("domset", "Dominator Set Construction", true);
// dominates - Return true if A dominates B. This performs the special checks
// necessary if A and B are in the same basic block.
//
bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
if (BBA != BBB) return dominates(BBA, BBB);
// It is not possible to determine dominance between two PHI nodes
// based on their ordering.
if (isa<PHINode>(A) && isa<PHINode>(B))
return false;
// Loop through the basic block until we find A or B.
BasicBlock::iterator I = BBA->begin();
for (; &*I != A && &*I != B; ++I) /*empty*/;
if(!IsPostDominators) {
// A dominates B if it is found first in the basic block.
return &*I == A;
} else {
// A post-dominates B if B is found first in the basic block.
return &*I == B;
}
}
// runOnFunction - This method calculates the forward dominator sets for the
// specified function.
//
bool DominatorSet::runOnFunction(Function &F) {
BasicBlock *Root = &F.getEntryBlock();
Roots.clear();
Roots.push_back(Root);
assert(pred_begin(Root) == pred_end(Root) &&
"Root node has predecessors in function!");
ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
Doms.clear();
if (Roots.empty()) return false;
// Root nodes only dominate themselves.
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
Doms[Roots[i]].insert(Roots[i]);
// Loop over all of the blocks in the function, calculating dominator sets for
// each function.
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
if (BasicBlock *IDom = ID[I]) { // Get idom if block is reachable
DomSetType &DS = Doms[I];
assert(DS.empty() && "Domset already filled in for this block?");
DS.insert(I); // Blocks always dominate themselves
// Insert all dominators into the set...
while (IDom) {
// If we have already computed the dominator sets for our immediate
// dominator, just use it instead of walking all the way up to the root.
DomSetType &IDS = Doms[IDom];
if (!IDS.empty()) {
DS.insert(IDS.begin(), IDS.end());
break;
} else {
DS.insert(IDom);
IDom = ID[IDom];
}
}
} else {
// Ensure that every basic block has at least an empty set of nodes. This
// is important for the case when there is unreachable blocks.
Doms[I];
}
return false;
}
namespace llvm {
static std::ostream &operator<<(std::ostream &o,
const std::set<BasicBlock*> &BBs) {
@ -347,17 +264,6 @@ static std::ostream &operator<<(std::ostream &o,
}
}
void DominatorSetBase::print(std::ostream &o, const Module* ) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << " DomSet For BB: ";
if (I->first)
WriteAsOperand(o, I->first, false);
else
o << " <<exit node>>";
o << " is:\t" << I->second << "\n";
}
}
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
@ -1072,5 +978,3 @@ void ETForestBase::print(std::ostream &o, const Module *) const {
}
o << "\n";
}
DEFINING_FILE_FOR(DominatorSet)

View File

@ -1,15 +0,0 @@
; RUN: llvm-upgrade < %s | llvm-as | opt -analyze -domset -disable-verify
;
int %re_match_2() {
ENTRY:
br label %loopexit.20
loopentry.20:
br label %loopexit.20
loopexit.20:
ret int 0
endif.46: ; UNREACHABLE
br label %loopentry.20
}

View File

@ -1,4 +1,4 @@
; RUN: llvm-as < %s | opt -domset -break-crit-edges -domtree -disable-output
; RUN: llvm-as < %s | opt -break-crit-edges -domtree -disable-output
; PR1110
%struct.OggVorbis_File = type { i8*, i32, i64, i64, %struct.ogg_sync_state, i32, i64*, i64*, i32*, i64*, %struct.vorbis_info*, %struct.vorbis_comment*, i64, i32, i32, i32, double, double, %struct.ogg_stream_state, %struct.vorbis_dsp_state, %struct.vorbis_block, %struct.ov_callbacks }

View File

@ -1,6 +1,6 @@
; Basic test for bugpoint.
; RUN: bugpoint %s -domset -idom -domset -bugpoint-crashcalls \
; RUN: -domset -idom -domset
; RUN: bugpoint %s -idom -bugpoint-crashcalls \
; RUN: -idom
define i32 @test() {
call i32 @test()

View File

@ -1,11 +0,0 @@
; Dominator set calculation is not calculating dominators for unreachable
; blocks. These blocks should at least dominate themselves. This is
; fouling up the verify pass.
;
; RUN: llvm-upgrade < %s | llvm-as | opt -analyze -domset | grep BB
void %test() {
ret void
BB:
ret void
}