[JumpThreading] Use range-based for loops.

No functionality change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257262 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Benjamin Kramer 2016-01-09 18:43:01 +00:00
parent 1d2d27bdfb
commit cf3ea59217

View File

@ -100,9 +100,9 @@ namespace {
std::unique_ptr<BranchProbabilityInfo> BPI;
bool HasProfileData;
#ifdef NDEBUG
SmallPtrSet<BasicBlock*, 16> LoopHeaders;
SmallPtrSet<const BasicBlock *, 16> LoopHeaders;
#else
SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders;
#endif
DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
@ -364,8 +364,8 @@ void JumpThreading::FindLoopHeaders(Function &F) {
SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
FindFunctionBackedges(F, Edges);
for (unsigned i = 0, e = Edges.size(); i != e; ++i)
LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
for (const auto &Edge : Edges)
LoopHeaders.insert(Edge.second);
}
/// getKnownConstant - Helper method to determine if we can thread over a
@ -411,8 +411,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// If V is a constant, then it is known in all predecessors.
if (Constant *KC = getKnownConstant(V, Preference)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Result.push_back(std::make_pair(KC, *PI));
for (BasicBlock *Pred : predecessors(BB))
Result.push_back(std::make_pair(KC, Pred));
return true;
}
@ -435,8 +435,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
// Perhaps getConstantOnEdge should be smart enough to do this?
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
for (BasicBlock *P : predecessors(BB)) {
// If the value is known by LazyValueInfo to be a constant in a
// predecessor, use that information to try to thread this block.
Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
@ -492,22 +491,17 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// Scan for the sentinel. If we find an undef, force it to the
// interesting value: x|undef -> true and x&undef -> false.
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
if (LHSVals[i].first == InterestingVal ||
isa<UndefValue>(LHSVals[i].first)) {
Result.push_back(LHSVals[i]);
Result.back().first = InterestingVal;
LHSKnownBBs.insert(LHSVals[i].second);
for (const auto &LHSVal : LHSVals)
if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
Result.emplace_back(InterestingVal, LHSVal.second);
LHSKnownBBs.insert(LHSVal.second);
}
for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
if (RHSVals[i].first == InterestingVal ||
isa<UndefValue>(RHSVals[i].first)) {
for (const auto &RHSVal : RHSVals)
if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
// If we already inferred a value for this block on the LHS, don't
// re-add it.
if (!LHSKnownBBs.count(RHSVals[i].second)) {
Result.push_back(RHSVals[i]);
Result.back().first = InterestingVal;
}
if (!LHSKnownBBs.count(RHSVal.second))
Result.emplace_back(InterestingVal, RHSVal.second);
}
return !Result.empty();
@ -523,8 +517,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
return false;
// Invert the known values.
for (unsigned i = 0, e = Result.size(); i != e; ++i)
Result[i].first = ConstantExpr::getNot(Result[i].first);
for (auto &R : Result)
R.first = ConstantExpr::getNot(R.first);
return true;
}
@ -539,12 +533,12 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
WantInteger, CxtI);
// Try to use constant folding to simplify the binary operator.
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
Constant *V = LHSVals[i].first;
for (const auto &LHSVal : LHSVals) {
Constant *V = LHSVal.first;
Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
if (Constant *KC = getKnownConstant(Folded, WantInteger))
Result.push_back(std::make_pair(KC, LHSVals[i].second));
Result.push_back(std::make_pair(KC, LHSVal.second));
}
}
@ -592,8 +586,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
BasicBlock *P = *PI;
for (BasicBlock *P : predecessors(BB)) {
// If the value is known by LazyValueInfo to be a constant in a
// predecessor, use that information to try to thread this block.
LazyValueInfo::Tristate Res =
@ -616,12 +609,12 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
WantInteger, CxtI);
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
Constant *V = LHSVals[i].first;
for (const auto &LHSVal : LHSVals) {
Constant *V = LHSVal.first;
Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
V, CmpConst);
if (Constant *KC = getKnownConstant(Folded, WantInteger))
Result.push_back(std::make_pair(KC, LHSVals[i].second));
Result.push_back(std::make_pair(KC, LHSVal.second));
}
return !Result.empty();
@ -638,8 +631,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
if ((TrueVal || FalseVal) &&
ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
WantInteger, CxtI)) {
for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
Constant *Cond = Conds[i].first;
for (auto &C : Conds) {
Constant *Cond = C.first;
// Figure out what value to use for the condition.
bool KnownCond;
@ -656,7 +649,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// See if the select has a known constant value for this predecessor.
if (Constant *Val = KnownCond ? TrueVal : FalseVal)
Result.push_back(std::make_pair(Val, Conds[i].second));
Result.push_back(std::make_pair(Val, C.second));
}
return !Result.empty();
@ -666,8 +659,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// If all else fails, see if LVI can figure out a constant value for us.
Constant *CI = LVI->getConstant(V, BB, CxtI);
if (Constant *KC = getKnownConstant(CI, Preference)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Result.push_back(std::make_pair(KC, *PI));
for (BasicBlock *Pred : predecessors(BB))
Result.push_back(std::make_pair(KC, Pred));
}
return !Result.empty();
@ -992,10 +985,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// If we got here, the loaded value is transparent through to the start of the
// block. Check to see if it is available in any of the predecessor blocks.
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI) {
BasicBlock *PredBB = *PI;
for (BasicBlock *PredBB : predecessors(LoadBB)) {
// If we already scanned this predecessor, skip it.
if (!PredsScanned.insert(PredBB).second)
continue;
@ -1042,13 +1032,11 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
SmallVector<BasicBlock*, 8> PredsToSplit;
SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
AvailablePredSet.insert(AvailablePreds[i].first);
for (const auto &AvailablePred : AvailablePreds)
AvailablePredSet.insert(AvailablePred.first);
// Add all the unavailable predecessors to the PredsToSplit list.
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI) {
BasicBlock *P = *PI;
for (BasicBlock *P : predecessors(LoadBB)) {
// If the predecessor is an indirect goto, we can't split the edge.
if (isa<IndirectBrInst>(P->getTerminator()))
return false;
@ -1133,9 +1121,9 @@ FindMostPopularDest(BasicBlock *BB,
// blocks with known and real destinations to threading undef. We'll handle
// them later if interesting.
DenseMap<BasicBlock*, unsigned> DestPopularity;
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
if (PredToDestList[i].second)
DestPopularity[PredToDestList[i].second]++;
for (const auto &PredToDest : PredToDestList)
if (PredToDest.second)
DestPopularity[PredToDest.second]++;
// Find the most popular dest.
DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
@ -1198,10 +1186,10 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
"ComputeValueKnownInPredecessors returned true with no values");
DEBUG(dbgs() << "IN BB: " << *BB;
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
for (const auto &PredValue : PredValues) {
dbgs() << " BB '" << BB->getName() << "': FOUND condition = "
<< *PredValues[i].first
<< " for pred '" << PredValues[i].second->getName() << "'.\n";
<< *PredValue.first
<< " for pred '" << PredValue.second->getName() << "'.\n";
});
// Decide what we want to thread through. Convert our list of known values to
@ -1214,8 +1202,8 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
BasicBlock *OnlyDest = nullptr;
BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
BasicBlock *Pred = PredValues[i].second;
for (const auto &PredValue : PredValues) {
BasicBlock *Pred = PredValue.second;
if (!SeenPreds.insert(Pred).second)
continue; // Duplicate predecessor entry.
@ -1224,7 +1212,7 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
if (isa<IndirectBrInst>(Pred->getTerminator()))
continue;
Constant *Val = PredValues[i].first;
Constant *Val = PredValue.first;
BasicBlock *DestBB;
if (isa<UndefValue>(Val))
@ -1264,16 +1252,15 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
// Now that we know what the most popular destination is, factor all
// predecessors that will jump to it into a single predecessor.
SmallVector<BasicBlock*, 16> PredsToFactor;
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
if (PredToDestList[i].second == MostPopularDest) {
BasicBlock *Pred = PredToDestList[i].first;
for (const auto &PredToDest : PredToDestList)
if (PredToDest.second == MostPopularDest) {
BasicBlock *Pred = PredToDest.first;
// This predecessor may be a switch or something else that has multiple
// edges to the block. Factor each of these edges by listing them
// according to # occurrences in PredsToFactor.
TerminatorInst *PredTI = Pred->getTerminator();
for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
if (PredTI->getSuccessor(i) == BB)
for (BasicBlock *Succ : successors(Pred))
if (Succ == BB)
PredsToFactor.push_back(Pred);
}
@ -1370,11 +1357,11 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
// Scan the information to see which is most popular: true or false. The
// predecessors can be of the set true, false, or undef.
unsigned NumTrue = 0, NumFalse = 0;
for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
if (isa<UndefValue>(XorOpValues[i].first))
for (const auto &XorOpValue : XorOpValues) {
if (isa<UndefValue>(XorOpValue.first))
// Ignore undefs for the count.
continue;
if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
if (cast<ConstantInt>(XorOpValue.first)->isZero())
++NumFalse;
else
++NumTrue;
@ -1390,12 +1377,11 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
// Collect all of the blocks that this can be folded into so that we can
// factor this once and clone it once.
SmallVector<BasicBlock*, 8> BlocksToFoldInto;
for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
if (XorOpValues[i].first != SplitVal &&
!isa<UndefValue>(XorOpValues[i].first))
for (const auto &XorOpValue : XorOpValues) {
if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
continue;
BlocksToFoldInto.push_back(XorOpValues[i].second);
BlocksToFoldInto.push_back(XorOpValue.second);
}
// If we inferred a value for all of the predecessors, then duplication won't
@ -1547,10 +1533,10 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
// PHI insertion, of which we are prepared to do, clean these up now.
SSAUpdater SSAUpdate;
SmallVector<Use*, 16> UsesToRename;
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
for (Instruction &I : *BB) {
// Scan all uses of this instruction to see if it is used outside of its
// block, and if so, record them in UsesToRename.
for (Use &U : I->uses()) {
for (Use &U : I.uses()) {
Instruction *User = cast<Instruction>(U.getUser());
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(U) == BB)
@ -1565,14 +1551,14 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
if (UsesToRename.empty())
continue;
DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
// We found a use of I outside of BB. Rename all uses of I that are outside
// its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
// with the two values we know.
SSAUpdate.Initialize(I->getType(), I->getName());
SSAUpdate.AddAvailableValue(BB, &*I);
SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&*I]);
SSAUpdate.Initialize(I.getType(), I.getName());
SSAUpdate.AddAvailableValue(BB, &I);
SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
while (!UsesToRename.empty())
SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
@ -1648,10 +1634,10 @@ void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
// Collect updated outgoing edges' frequencies from BB and use them to update
// edge probabilities.
SmallVector<uint64_t, 4> BBSuccFreq;
for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
auto SuccFreq = (*I == SuccBB)
for (BasicBlock *Succ : successors(BB)) {
auto SuccFreq = (Succ == SuccBB)
? BB2SuccBBFreq - NewBBFreq
: BBOrigFreq * BPI->getEdgeProbability(BB, *I);
: BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
BBSuccFreq.push_back(SuccFreq.getFrequency());
}
@ -1787,10 +1773,10 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
// PHI insertion, of which we are prepared to do, clean these up now.
SSAUpdater SSAUpdate;
SmallVector<Use*, 16> UsesToRename;
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
for (Instruction &I : *BB) {
// Scan all uses of this instruction to see if it is used outside of its
// block, and if so, record them in UsesToRename.
for (Use &U : I->uses()) {
for (Use &U : I.uses()) {
Instruction *User = cast<Instruction>(U.getUser());
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(U) == BB)
@ -1805,14 +1791,14 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
if (UsesToRename.empty())
continue;
DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
// We found a use of I outside of BB. Rename all uses of I that are outside
// its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
// with the two values we know.
SSAUpdate.Initialize(I->getType(), I->getName());
SSAUpdate.AddAvailableValue(BB, &*I);
SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&*I]);
SSAUpdate.Initialize(I.getType(), I.getName());
SSAUpdate.AddAvailableValue(BB, &I);
SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
while (!UsesToRename.empty())
SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());