mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-26 21:20:37 +00:00
Change ScalarEvolution::getSCEVAtScope to always return the original value
in the case where a loop exit value cannot be computed, instead of only in some cases while using SCEVCouldNotCompute in others. This simplifies getSCEVAtScope's callers. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72375 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
c046c00d0a
commit
d594e6f034
@ -490,8 +490,8 @@ namespace llvm {
|
||||
/// This method can be used to compute the exit value for a variable defined
|
||||
/// in a loop by querying what the value will hold in the parent loop.
|
||||
///
|
||||
/// If this value is not computable at this scope, a SCEVCouldNotCompute
|
||||
/// object is returned.
|
||||
/// In the case that a relevant loop exit value cannot be computed, the
|
||||
/// original value V is returned.
|
||||
SCEVHandle getSCEVAtScope(const SCEV *S, const Loop *L);
|
||||
|
||||
/// getSCEVAtScope - This is a convenience function which does
|
||||
|
@ -2521,10 +2521,8 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
|
||||
SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
|
||||
|
||||
// Try to evaluate any dependencies out of the loop.
|
||||
SCEVHandle Tmp = getSCEVAtScope(LHS, L);
|
||||
if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
|
||||
Tmp = getSCEVAtScope(RHS, L);
|
||||
if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
|
||||
LHS = getSCEVAtScope(LHS, L);
|
||||
RHS = getSCEVAtScope(RHS, L);
|
||||
|
||||
// At this point, we would like to compute how many iterations of the
|
||||
// loop the predicate will return true for these inputs.
|
||||
@ -2680,8 +2678,7 @@ ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
|
||||
// Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
|
||||
// Check to see if X is a loop variant variable value now.
|
||||
SCEVHandle Idx = getSCEV(VarIdx);
|
||||
SCEVHandle Tmp = getSCEVAtScope(Idx, L);
|
||||
if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
|
||||
Idx = getSCEVAtScope(Idx, L);
|
||||
|
||||
// We can only recognize very limited forms of loop index expressions, in
|
||||
// particular, only affine AddRec's like {C1,+,C2}.
|
||||
@ -2911,8 +2908,8 @@ ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen)
|
||||
/// This method can be used to compute the exit value for a variable defined
|
||||
/// in a loop by querying what the value will hold in the parent loop.
|
||||
///
|
||||
/// If this value is not computable at this scope, a SCEVCouldNotCompute
|
||||
/// object is returned.
|
||||
/// In the case that a relevant loop exit value cannot be computed, the
|
||||
/// original value V is returned.
|
||||
SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
// FIXME: this should be turned into a virtual method on SCEV!
|
||||
|
||||
@ -3016,7 +3013,6 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
|
||||
SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
|
||||
if (OpAtScope != Comm->getOperand(i)) {
|
||||
if (OpAtScope == UnknownValue) return UnknownValue;
|
||||
// Okay, at least one of these operands is loop variant but might be
|
||||
// foldable. Build a new instance of the folded commutative expression.
|
||||
std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
|
||||
@ -3024,7 +3020,6 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
|
||||
for (++i; i != e; ++i) {
|
||||
OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
|
||||
if (OpAtScope == UnknownValue) return UnknownValue;
|
||||
NewOps.push_back(OpAtScope);
|
||||
}
|
||||
if (isa<SCEVAddExpr>(Comm))
|
||||
@ -3044,9 +3039,7 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
|
||||
if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
|
||||
SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
|
||||
if (LHS == UnknownValue) return LHS;
|
||||
SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
|
||||
if (RHS == UnknownValue) return RHS;
|
||||
if (LHS == Div->getLHS() && RHS == Div->getRHS())
|
||||
return Div; // must be loop invariant
|
||||
return getUDivExpr(LHS, RHS);
|
||||
@ -3059,17 +3052,16 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
// To evaluate this recurrence, we need to know how many times the AddRec
|
||||
// loop iterates. Compute this now.
|
||||
SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
|
||||
if (BackedgeTakenCount == UnknownValue) return UnknownValue;
|
||||
if (BackedgeTakenCount == UnknownValue) return AddRec;
|
||||
|
||||
// Then, evaluate the AddRec.
|
||||
return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
|
||||
}
|
||||
return UnknownValue;
|
||||
return AddRec;
|
||||
}
|
||||
|
||||
if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
|
||||
SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
|
||||
if (Op == UnknownValue) return Op;
|
||||
if (Op == Cast->getOperand())
|
||||
return Cast; // must be loop invariant
|
||||
return getZeroExtendExpr(Op, Cast->getType());
|
||||
@ -3077,7 +3069,6 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
|
||||
if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
|
||||
SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
|
||||
if (Op == UnknownValue) return Op;
|
||||
if (Op == Cast->getOperand())
|
||||
return Cast; // must be loop invariant
|
||||
return getSignExtendExpr(Op, Cast->getType());
|
||||
@ -3085,7 +3076,6 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
|
||||
if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
|
||||
SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
|
||||
if (Op == UnknownValue) return Op;
|
||||
if (Op == Cast->getOperand())
|
||||
return Cast; // must be loop invariant
|
||||
return getTruncateExpr(Op, Cast->getType());
|
||||
@ -3238,8 +3228,6 @@ SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
|
||||
|
||||
// Get the initial value for the loop.
|
||||
SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
|
||||
if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
|
||||
|
||||
SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
|
||||
|
||||
if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
|
||||
@ -3805,14 +3793,13 @@ void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
|
||||
if (const Loop *L = LI->getLoopFor((*I).getParent())) {
|
||||
OS << "Exits: ";
|
||||
SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
|
||||
if (isa<SCEVCouldNotCompute>(ExitValue)) {
|
||||
if (!ExitValue->isLoopInvariant(L)) {
|
||||
OS << "<<Unknown>>";
|
||||
} else {
|
||||
OS << *ExitValue;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
OS << "\n";
|
||||
}
|
||||
|
||||
|
@ -275,10 +275,8 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L,
|
||||
// Okay, this instruction has a user outside of the current loop
|
||||
// and varies predictably *inside* the loop. Evaluate the value it
|
||||
// contains when the loop exits, if possible.
|
||||
SCEVHandle SH = SE->getSCEV(Inst);
|
||||
SCEVHandle ExitValue = SE->getSCEVAtScope(SH, L->getParentLoop());
|
||||
if (isa<SCEVCouldNotCompute>(ExitValue) ||
|
||||
!ExitValue->isLoopInvariant(L))
|
||||
SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
|
||||
if (!ExitValue->isLoopInvariant(L))
|
||||
continue;
|
||||
|
||||
Changed = true;
|
||||
|
Loading…
Reference in New Issue
Block a user