Use the schedule itinerary operand use/def cycle information to adjust dependence edge latency for post-RA scheduling.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79425 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
David Goodwin 2009-08-19 16:08:58 +00:00
parent 774350a606
commit dc4bdcdef1
6 changed files with 107 additions and 19 deletions

View File

@ -495,6 +495,12 @@ namespace llvm {
///
virtual void ComputeLatency(SUnit *SU) = 0;
/// ComputeOperandLatency - Override dependence edge latency using
/// operand use/def information
///
virtual void ComputeOperandLatency(SUnit *Def, SUnit *Use,
SDep& dep) const { };
/// Schedule - Order nodes according to selected style, filling
/// in the Sequence member.
///

View File

@ -103,7 +103,7 @@ struct InstrItineraryData {
/// isEmpty - Returns true if there are no itineraries.
///
bool isEmpty() const { return Itineratries == 0; }
/// beginStage - Return the first stage of the itinerary.
///
const InstrStage *beginStage(unsigned ItinClassIndx) const {
@ -118,20 +118,17 @@ struct InstrItineraryData {
return Stages + StageIdx;
}
/// getLatency - Return the scheduling latency of the given class. A
/// simple latency value for an instruction is an over-simplification
/// for some architectures, but it's a reasonable first approximation.
/// getStageLatency - Return the total stage latency of the given
/// class. The latency is the maximum completion time for any stage
/// in the itinerary.
///
unsigned getLatency(unsigned ItinClassIndx) const {
// If the target doesn't provide latency information, use a simple
// non-zero default value for all instructions.
unsigned getStageLatency(unsigned ItinClassIndx) const {
// If the target doesn't provide itinerary information, use a
// simple non-zero default value for all instructions.
if (isEmpty())
return 1;
// Caclulate the maximum completion time for any stage. The
// assumption is that all inputs are consumed at the start of the
// first stage and that all outputs are produced at the end of the
// latest completing last stage.
// Calculate the maximum completion time for any stage.
unsigned Latency = 0, StartCycle = 0;
for (const InstrStage *IS = beginStage(ItinClassIndx),
*E = endStage(ItinClassIndx); IS != E; ++IS) {
@ -141,6 +138,21 @@ struct InstrItineraryData {
return Latency;
}
/// getOperandCycle - Return the cycle for the given class and
/// operand. Return -1 if no cycle is specified for the operand.
///
int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
if (isEmpty())
return -1;
unsigned FirstIdx = Itineratries[ItinClassIndx].FirstOperandCycle;
unsigned LastIdx = Itineratries[ItinClassIndx].LastOperandCycle;
if ((FirstIdx + OperandIdx) >= LastIdx)
return -1;
return (int)OperandCycles[FirstIdx + OperandIdx];
}
};

View File

@ -17,6 +17,7 @@
namespace llvm {
class SDep;
class SUnit;
//===----------------------------------------------------------------------===//
///
@ -40,7 +41,8 @@ public:
// adjustSchedDependency - Perform target specific adjustments to
// the latency of a schedule dependency.
virtual void adjustSchedDependency(SDep&) const { };
virtual void adjustSchedDependency(SUnit *def, SUnit *use,
SDep& dep) const { };
};
} // End llvm namespace

View File

@ -210,6 +210,10 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
// Optionally add in a special extra latency for nodes that
// feed addresses.
// TODO: Do this for register aliases too.
// TODO: Perhaps we should get rid of
// SpecialAddressLatency and just move this into
// adjustSchedDependency for the targets that care about
// it.
if (SpecialAddressLatency != 0 && !UnitLatencies) {
MachineInstr *UseMI = UseSU->getInstr();
const TargetInstrDesc &UseTID = UseMI->getDesc();
@ -220,8 +224,14 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
LDataLatency += SpecialAddressLatency;
}
// Adjust the dependence latency using operand def/use
// information (if any), and then allow the target to
// perform its own adjustments.
const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
ST.adjustSchedDependency((SDep &)dep);
if (!UnitLatencies) {
ComputeOperandLatency(SU, UseSU, (SDep &)dep);
ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
}
UseSU->addPred(dep);
}
}
@ -231,7 +241,10 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
SUnit *UseSU = UseList[i];
if (UseSU != SU) {
const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
ST.adjustSchedDependency((SDep &)dep);
if (!UnitLatencies) {
ComputeOperandLatency(SU, UseSU, (SDep &)dep);
ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
}
UseSU->addPred(dep);
}
}
@ -410,7 +423,7 @@ void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
// Compute the latency for the node.
SU->Latency =
InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
// Simplistic target-independent heuristic: assume that loads take
// extra time.
@ -419,6 +432,50 @@ void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
SU->Latency += 2;
}
void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
SDep& dep) const {
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
if (InstrItins.isEmpty())
return;
// For a data dependency with a known register...
if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
return;
const unsigned Reg = dep.getReg();
// ... find the definition of the register in the defining
// instruction
MachineInstr *DefMI = Def->getInstr();
int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
if (DefIdx != -1) {
int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
if (DefCycle >= 0) {
MachineInstr *UseMI = Use->getInstr();
const unsigned UseClass = UseMI->getDesc().getSchedClass();
// For all uses of the register, calculate the maxmimum latency
int Latency = -1;
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = UseMI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned MOReg = MO.getReg();
if (MOReg != Reg)
continue;
int UseCycle = InstrItins.getOperandCycle(UseClass, i);
if (UseCycle >= 0)
Latency = std::max(Latency, DefCycle - UseCycle + 1);
}
// If we found a latency, then replace the existing dependence latency.
if (Latency >= 0)
dep.setLatency(Latency);
}
}
}
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
SU->getInstr()->dump();
}

View File

@ -160,6 +160,12 @@ namespace llvm {
///
virtual void ComputeLatency(SUnit *SU);
/// ComputeOperandLatency - Override dependence edge latency using
/// operand use/def information
///
virtual void ComputeOperandLatency(SUnit *Def, SUnit *Use,
SDep& dep) const;
virtual MachineBasicBlock *EmitSchedule();
/// StartBlock - Prepare to perform scheduling in the given block.

View File

@ -155,6 +155,9 @@ void ScheduleDAGSDNodes::BuildSchedUnits() {
void ScheduleDAGSDNodes::AddSchedEdges() {
const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
// Check to see if the scheduler cares about latencies.
bool UnitLatencies = ForceUnitLatencies();
// Pass 2: add the preds, succs, etc.
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
SUnit *SU = &SUnits[su];
@ -212,8 +215,10 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
const SDep& dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
OpSU->Latency, PhysReg);
if (!isChain)
ST.adjustSchedDependency((SDep &)dep);
if (!isChain && !UnitLatencies) {
ComputeOperandLatency(OpSU, SU, (SDep &)dep);
ST.adjustSchedDependency(OpSU, SU, (SDep &)dep);
}
SU->addPred(dep);
}
@ -242,8 +247,8 @@ void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
if (N->isMachineOpcode()) {
SawMachineOpcode = true;
SU->Latency +=
InstrItins.getLatency(TII->get(N->getMachineOpcode()).getSchedClass());
SU->Latency += InstrItins.
getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
}
}