mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-27 07:12:06 +00:00
prettify, no semantic changes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52460 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
ca85d65277
commit
dfed118f22
@ -2235,82 +2235,96 @@ insert entries into the symbol table.</p>
|
||||
User</a></tt> class provides a base for expressing the ownership of <tt>User</tt>
|
||||
towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
|
||||
Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
|
||||
Use</a></tt> helper class is employed to do the bookkeeping and facilitate O(1)
|
||||
Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
|
||||
addition and removal.</p>
|
||||
|
||||
<pre>
|
||||
-----------------------------------------------------------------
|
||||
--- Interaction and relationship between User and Use objects ---
|
||||
-----------------------------------------------------------------
|
||||
<!-- ______________________________________________________________________ -->
|
||||
<div class="doc_subsubsection">
|
||||
<a name="PATypeHolder">Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects</a>
|
||||
</div>
|
||||
|
||||
|
||||
A subclass of User can choose between incorporating its Use objects
|
||||
<div class="doc_text">
|
||||
<p>
|
||||
A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
|
||||
or refer to them out-of-line by means of a pointer. A mixed variant
|
||||
(some Uses inline others hung off) is impractical and breaks the invariant
|
||||
that the Use objects belonging to the same User form a contiguous array.
|
||||
(some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
|
||||
that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
We have 2 different layouts in the User (sub)classes:
|
||||
|
||||
Layout a)
|
||||
The Use object(s) are inside (resp. at fixed offset) of the User
|
||||
object and there are a fixed number of them.
|
||||
|
||||
Layout b)
|
||||
The Use object(s) are referenced by a pointer to an
|
||||
array from the User object and there may be a variable
|
||||
number of them.
|
||||
<p>
|
||||
We have 2 different layouts in the <tt>User</tt> (sub)classes:
|
||||
<ul>
|
||||
<li><p>Layout a)
|
||||
The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
|
||||
object and there are a fixed number of them.</p>
|
||||
|
||||
<li><p>Layout b)
|
||||
The <tt>Use</tt> object(s) are referenced by a pointer to an
|
||||
array from the <tt>User</tt> object and there may be a variable
|
||||
number of them.</p>
|
||||
</ul>
|
||||
<p>
|
||||
Initially each layout will possess a direct pointer to the
|
||||
start of the array of Uses. Though not mandatory for layout a),
|
||||
start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
|
||||
we stick to this redundancy for the sake of simplicity.
|
||||
The User object will also store the number of Use objects it
|
||||
The <tt>User</tt> object will also store the number of <tt>Use</tt> objects it
|
||||
has. (Theoretically this information can also be calculated
|
||||
given the scheme presented below.)
|
||||
given the scheme presented below.)</p>
|
||||
<p>
|
||||
Special forms of allocation operators (<tt>operator new</tt>)
|
||||
will enforce the following memory layouts:</p>
|
||||
|
||||
Special forms of allocation operators (operator new)
|
||||
will enforce the following memory layouts:
|
||||
<ul>
|
||||
<li><p>Layout a) will be modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
|
||||
|
||||
<pre>
|
||||
...---.---.---.---.-------...
|
||||
| P | P | P | P | User
|
||||
'''---'---'---'---'-------'''
|
||||
</pre>
|
||||
|
||||
# Layout a) will be modelled by prepending the User object
|
||||
# by the Use[] array.
|
||||
#
|
||||
# ...---.---.---.---.-------...
|
||||
# | P | P | P | P | User
|
||||
# '''---'---'---'---'-------'''
|
||||
<li><p>Layout b) will be modelled by pointing at the Use[] array.</p>
|
||||
<pre>
|
||||
.-------...
|
||||
| User
|
||||
'-------'''
|
||||
|
|
||||
v
|
||||
.---.---.---.---...
|
||||
| P | P | P | P |
|
||||
'---'---'---'---'''
|
||||
</pre>
|
||||
</ul>
|
||||
<i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
|
||||
is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
|
||||
|
||||
<!-- ______________________________________________________________________ -->
|
||||
<div class="doc_subsubsection">
|
||||
<a name="PATypeHolder">The waymarking algorithm</a>
|
||||
</div>
|
||||
|
||||
# Layout b) will be modelled by pointing at the Use[] array.
|
||||
#
|
||||
# .-------...
|
||||
# | User
|
||||
# '-------'''
|
||||
# |
|
||||
# v
|
||||
# .---.---.---.---...
|
||||
# | P | P | P | P |
|
||||
# '---'---'---'---'''
|
||||
<div class="doc_text">
|
||||
<p>
|
||||
Since the <tt>Use</tt> objects will be deprived of the direct pointer to
|
||||
their <tt>User</tt> objects, there must be a fast and exact method to
|
||||
recover it. This is accomplished by the following scheme:</p>
|
||||
</div>
|
||||
|
||||
(In the above figures 'P' stands for the Use** that
|
||||
is stored in each Use object in the member Use::Prev)
|
||||
|
||||
|
||||
Since the Use objects will be deprived of the direct pointer to
|
||||
their User objects, there must be a fast and exact method to
|
||||
recover it. This is accomplished by the following scheme:
|
||||
|
||||
A bit-encoding in the 2 LSBits of the Use::Prev will allow to find the
|
||||
start of the User object:
|
||||
|
||||
00 --> binary digit 0
|
||||
01 --> binary digit 1
|
||||
10 --> stop and calc (s)
|
||||
11 --> full stop (S)
|
||||
|
||||
Given a Use*, all we have to do is to walk till we get
|
||||
a stop and we either have a User immediately behind or
|
||||
A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> will allow to find the
|
||||
start of the <tt>User</tt> object:
|
||||
<ul>
|
||||
<li><tt>00</tt> —> binary digit 0</li>
|
||||
<li><tt>01</tt> —> binary digit 1</li>
|
||||
<li><tt>10</tt> —> stop and calculate (<tt>s</tt>)</li>
|
||||
<li><tt>11</tt> —> full stop (<tt>S</tt>)</li>
|
||||
</ul>
|
||||
<p>
|
||||
Given a <tt>Use*</tt>, all we have to do is to walk till we get
|
||||
a stop and we either have a <tt>User</tt> immediately behind or
|
||||
we have to walk to the next stop picking up digits
|
||||
and calculating the offset:
|
||||
|
||||
and calculating the offset:</p>
|
||||
<pre>
|
||||
.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
|
||||
| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
|
||||
'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
|
||||
@ -2320,14 +2334,24 @@ and calculating the offset:
|
||||
| | |______________________>
|
||||
| |______________________________________>
|
||||
|__________________________________________________________>
|
||||
|
||||
|
||||
</pre>
|
||||
<p>
|
||||
Only the significant number of bits need to be stored between the
|
||||
stops, so that the worst case is 20 memory accesses when there are
|
||||
1000 Use objects.
|
||||
stops, so that the <i>worst case is 20 memory accesses</i> when there are
|
||||
1000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
|
||||
|
||||
The following literate Haskell fragment demonstrates the concept:
|
||||
<!-- ______________________________________________________________________ -->
|
||||
<div class="doc_subsubsection">
|
||||
<a name="PATypeHolder">Reference implementation</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
<p>
|
||||
The following literate Haskell fragment demonstrates the concept:</p>
|
||||
</div>
|
||||
|
||||
<div class="doc_code">
|
||||
<pre>
|
||||
> import Test.QuickCheck
|
||||
>
|
||||
> digits :: Int -> [Char] -> [Char]
|
||||
@ -2345,13 +2369,16 @@ The following literate Haskell fragment demonstrates the concept:
|
||||
>
|
||||
> test = takeLast 40 $ dist 20 []
|
||||
>
|
||||
</pre>
|
||||
</div>
|
||||
<p>
|
||||
Printing <test> gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
|
||||
<p>
|
||||
The reverse algorithm computes the length of the string just by examining
|
||||
a certain prefix:</p>
|
||||
|
||||
Printing <test> gives: "1s100000s11010s10100s1111s1010s110s11s1S"
|
||||
|
||||
The reverse algorithm computes the
|
||||
length of the string just by examining
|
||||
a certain prefix:
|
||||
|
||||
<div class="doc_code">
|
||||
<pre>
|
||||
> pref :: [Char] -> Int
|
||||
> pref "S" = 1
|
||||
> pref ('s':'1':rest) = decode 2 1 rest
|
||||
@ -2361,45 +2388,64 @@ a certain prefix:
|
||||
> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
|
||||
> decode walk acc _ = walk + acc
|
||||
>
|
||||
</pre>
|
||||
</div>
|
||||
<p>
|
||||
Now, as expected, printing <pref test> gives <tt>40</tt>.</p>
|
||||
<p>
|
||||
We can <i>quickCheck</i> this with following property:</p>
|
||||
|
||||
Now, as expected, printing <pref test> gives 40.
|
||||
|
||||
We can quickCheck this with following property:
|
||||
|
||||
<div class="doc_code">
|
||||
<pre>
|
||||
> testcase = dist 2000 []
|
||||
> testcaseLength = length testcase
|
||||
>
|
||||
> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
|
||||
> where arr = takeLast n testcase
|
||||
>
|
||||
</pre>
|
||||
</div>
|
||||
<p>
|
||||
As expected <quickCheck identityProp> gives:</p>
|
||||
|
||||
As expected <quickCheck identityProp> gives:
|
||||
|
||||
<pre>
|
||||
*Main> quickCheck identityProp
|
||||
OK, passed 100 tests.
|
||||
</pre>
|
||||
<p>
|
||||
Let's be a bit more exhaustive:</p>
|
||||
|
||||
Let's be a bit more exhaustive:
|
||||
|
||||
<div class="doc_code">
|
||||
<pre>
|
||||
>
|
||||
> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
|
||||
>
|
||||
</pre>
|
||||
</div>
|
||||
<p>
|
||||
And here is the result of <deepCheck identityProp>:</p>
|
||||
|
||||
And here is the result of <deepCheck identityProp>:
|
||||
|
||||
<pre>
|
||||
*Main> deepCheck identityProp
|
||||
OK, passed 500 tests.
|
||||
|
||||
|
||||
To maintain the invariant that the 2 LSBits of each Use** in Use
|
||||
never change after being set up, setters of Use::Prev must re-tag the
|
||||
new Use** on every modification. Accordingly getters must strip the
|
||||
tag bits.
|
||||
|
||||
For layout b) instead of the User we will find a pointer (User* with LSBit set).
|
||||
Following this pointer brings us to the User. A portable trick will ensure
|
||||
that the first bytes of User (if interpreted as a pointer) will never have
|
||||
the LSBit set.
|
||||
</pre>
|
||||
|
||||
<!-- ______________________________________________________________________ -->
|
||||
<div class="doc_subsubsection">
|
||||
<a name="PATypeHolder">Tagging considerations</a>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
|
||||
never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
|
||||
new <tt>Use**</tt> on every modification. Accordingly getters must strip the
|
||||
tag bits.</p>
|
||||
<p>
|
||||
For layout b) instead of the <tt>User</tt> we will find a pointer (<tt>User*</tt> with LSBit set).
|
||||
Following this pointer brings us to the <tt>User</tt>. A portable trick will ensure
|
||||
that the first bytes of <tt>User</tt> (if interpreted as a pointer) will never have
|
||||
the LSBit set.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
|
Loading…
x
Reference in New Issue
Block a user