mirror of
https://github.com/RPCSX/llvm.git
synced 2025-04-02 08:11:54 +00:00
Fix some typos in the Kaleidoscope tutorial (PR28120)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272681 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
d8ffcd8311
commit
e09bd44a40
@ -80,7 +80,7 @@ in the various pieces. The structure of the tutorial is:
|
||||
information will allow you to set breakpoints in Kaleidoscope
|
||||
functions, print out argument variables, and call functions - all
|
||||
from within the debugger!
|
||||
- `Chapter #9 <LangImpl8.html>`_: Conclusion and other useful LLVM
|
||||
- `Chapter #9 <LangImpl9.html>`_: Conclusion and other useful LLVM
|
||||
tidbits - This chapter wraps up the series by talking about
|
||||
potential ways to extend the language, but also includes a bunch of
|
||||
pointers to info about "special topics" like adding garbage
|
||||
|
@ -546,17 +546,17 @@ converge:
|
||||
|
||||
# Determine whether the specific location diverges.
|
||||
# Solve for z = z^2 + c in the complex plane.
|
||||
def mandleconverger(real imag iters creal cimag)
|
||||
def mandelconverger(real imag iters creal cimag)
|
||||
if iters > 255 | (real*real + imag*imag > 4) then
|
||||
iters
|
||||
else
|
||||
mandleconverger(real*real - imag*imag + creal,
|
||||
mandelconverger(real*real - imag*imag + creal,
|
||||
2*real*imag + cimag,
|
||||
iters+1, creal, cimag);
|
||||
|
||||
# Return the number of iterations required for the iteration to escape
|
||||
def mandleconverge(real imag)
|
||||
mandleconverger(real, imag, 0, real, imag);
|
||||
def mandelconverge(real imag)
|
||||
mandelconverger(real, imag, 0, real, imag);
|
||||
|
||||
This "``z = z2 + c``" function is a beautiful little creature that is
|
||||
the basis for computation of the `Mandelbrot
|
||||
@ -570,12 +570,12 @@ but we can whip together something using the density plotter above:
|
||||
|
||||
::
|
||||
|
||||
# Compute and plot the mandlebrot set with the specified 2 dimensional range
|
||||
# Compute and plot the mandelbrot set with the specified 2 dimensional range
|
||||
# info.
|
||||
def mandelhelp(xmin xmax xstep ymin ymax ystep)
|
||||
for y = ymin, y < ymax, ystep in (
|
||||
(for x = xmin, x < xmax, xstep in
|
||||
printdensity(mandleconverge(x,y)))
|
||||
printdensity(mandelconverge(x,y)))
|
||||
: putchard(10)
|
||||
)
|
||||
|
||||
@ -585,7 +585,7 @@ but we can whip together something using the density plotter above:
|
||||
mandelhelp(realstart, realstart+realmag*78, realmag,
|
||||
imagstart, imagstart+imagmag*40, imagmag);
|
||||
|
||||
Given this, we can try plotting out the mandlebrot set! Lets try it out:
|
||||
Given this, we can try plotting out the mandelbrot set! Lets try it out:
|
||||
|
||||
::
|
||||
|
||||
|
@ -496,17 +496,17 @@ converge:
|
||||
|
||||
# determine whether the specific location diverges.
|
||||
# Solve for z = z^2 + c in the complex plane.
|
||||
def mandleconverger(real imag iters creal cimag)
|
||||
def mandelconverger(real imag iters creal cimag)
|
||||
if iters > 255 | (real*real + imag*imag > 4) then
|
||||
iters
|
||||
else
|
||||
mandleconverger(real*real - imag*imag + creal,
|
||||
mandelconverger(real*real - imag*imag + creal,
|
||||
2*real*imag + cimag,
|
||||
iters+1, creal, cimag);
|
||||
|
||||
# return the number of iterations required for the iteration to escape
|
||||
def mandleconverge(real imag)
|
||||
mandleconverger(real, imag, 0, real, imag);
|
||||
def mandelconverge(real imag)
|
||||
mandelconverger(real, imag, 0, real, imag);
|
||||
|
||||
This "z = z\ :sup:`2`\ + c" function is a beautiful little creature
|
||||
that is the basis for computation of the `Mandelbrot
|
||||
@ -520,12 +520,12 @@ but we can whip together something using the density plotter above:
|
||||
|
||||
::
|
||||
|
||||
# compute and plot the mandlebrot set with the specified 2 dimensional range
|
||||
# compute and plot the mandelbrot set with the specified 2 dimensional range
|
||||
# info.
|
||||
def mandelhelp(xmin xmax xstep ymin ymax ystep)
|
||||
for y = ymin, y < ymax, ystep in (
|
||||
(for x = xmin, x < xmax, xstep in
|
||||
printdensity(mandleconverge(x,y)))
|
||||
printdensity(mandelconverge(x,y)))
|
||||
: putchard(10)
|
||||
)
|
||||
|
||||
@ -535,7 +535,7 @@ but we can whip together something using the density plotter above:
|
||||
mandelhelp(realstart, realstart+realmag*78, realmag,
|
||||
imagstart, imagstart+imagmag*40, imagmag);
|
||||
|
||||
Given this, we can try plotting out the mandlebrot set! Lets try it out:
|
||||
Given this, we can try plotting out the mandelbrot set! Lets try it out:
|
||||
|
||||
::
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user