Fix some typos in the Kaleidoscope tutorial (PR28120)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272681 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Hans Wennborg 2016-06-14 16:05:12 +00:00
parent d8ffcd8311
commit e09bd44a40
3 changed files with 15 additions and 15 deletions

View File

@ -80,7 +80,7 @@ in the various pieces. The structure of the tutorial is:
information will allow you to set breakpoints in Kaleidoscope information will allow you to set breakpoints in Kaleidoscope
functions, print out argument variables, and call functions - all functions, print out argument variables, and call functions - all
from within the debugger! from within the debugger!
- `Chapter #9 <LangImpl8.html>`_: Conclusion and other useful LLVM - `Chapter #9 <LangImpl9.html>`_: Conclusion and other useful LLVM
tidbits - This chapter wraps up the series by talking about tidbits - This chapter wraps up the series by talking about
potential ways to extend the language, but also includes a bunch of potential ways to extend the language, but also includes a bunch of
pointers to info about "special topics" like adding garbage pointers to info about "special topics" like adding garbage

View File

@ -546,17 +546,17 @@ converge:
# Determine whether the specific location diverges. # Determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane. # Solve for z = z^2 + c in the complex plane.
def mandleconverger(real imag iters creal cimag) def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then if iters > 255 | (real*real + imag*imag > 4) then
iters iters
else else
mandleconverger(real*real - imag*imag + creal, mandelconverger(real*real - imag*imag + creal,
2*real*imag + cimag, 2*real*imag + cimag,
iters+1, creal, cimag); iters+1, creal, cimag);
# Return the number of iterations required for the iteration to escape # Return the number of iterations required for the iteration to escape
def mandleconverge(real imag) def mandelconverge(real imag)
mandleconverger(real, imag, 0, real, imag); mandelconverger(real, imag, 0, real, imag);
This "``z = z2 + c``" function is a beautiful little creature that is This "``z = z2 + c``" function is a beautiful little creature that is
the basis for computation of the `Mandelbrot the basis for computation of the `Mandelbrot
@ -570,12 +570,12 @@ but we can whip together something using the density plotter above:
:: ::
# Compute and plot the mandlebrot set with the specified 2 dimensional range # Compute and plot the mandelbrot set with the specified 2 dimensional range
# info. # info.
def mandelhelp(xmin xmax xstep ymin ymax ystep) def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in ( for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in (for x = xmin, x < xmax, xstep in
printdensity(mandleconverge(x,y))) printdensity(mandelconverge(x,y)))
: putchard(10) : putchard(10)
) )
@ -585,7 +585,7 @@ but we can whip together something using the density plotter above:
mandelhelp(realstart, realstart+realmag*78, realmag, mandelhelp(realstart, realstart+realmag*78, realmag,
imagstart, imagstart+imagmag*40, imagmag); imagstart, imagstart+imagmag*40, imagmag);
Given this, we can try plotting out the mandlebrot set! Lets try it out: Given this, we can try plotting out the mandelbrot set! Lets try it out:
:: ::

View File

@ -496,17 +496,17 @@ converge:
# determine whether the specific location diverges. # determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane. # Solve for z = z^2 + c in the complex plane.
def mandleconverger(real imag iters creal cimag) def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then if iters > 255 | (real*real + imag*imag > 4) then
iters iters
else else
mandleconverger(real*real - imag*imag + creal, mandelconverger(real*real - imag*imag + creal,
2*real*imag + cimag, 2*real*imag + cimag,
iters+1, creal, cimag); iters+1, creal, cimag);
# return the number of iterations required for the iteration to escape # return the number of iterations required for the iteration to escape
def mandleconverge(real imag) def mandelconverge(real imag)
mandleconverger(real, imag, 0, real, imag); mandelconverger(real, imag, 0, real, imag);
This "z = z\ :sup:`2`\ + c" function is a beautiful little creature This "z = z\ :sup:`2`\ + c" function is a beautiful little creature
that is the basis for computation of the `Mandelbrot that is the basis for computation of the `Mandelbrot
@ -520,12 +520,12 @@ but we can whip together something using the density plotter above:
:: ::
# compute and plot the mandlebrot set with the specified 2 dimensional range # compute and plot the mandelbrot set with the specified 2 dimensional range
# info. # info.
def mandelhelp(xmin xmax xstep ymin ymax ystep) def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in ( for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in (for x = xmin, x < xmax, xstep in
printdensity(mandleconverge(x,y))) printdensity(mandelconverge(x,y)))
: putchard(10) : putchard(10)
) )
@ -535,7 +535,7 @@ but we can whip together something using the density plotter above:
mandelhelp(realstart, realstart+realmag*78, realmag, mandelhelp(realstart, realstart+realmag*78, realmag,
imagstart, imagstart+imagmag*40, imagmag); imagstart, imagstart+imagmag*40, imagmag);
Given this, we can try plotting out the mandlebrot set! Lets try it out: Given this, we can try plotting out the mandelbrot set! Lets try it out:
:: ::