[NVPTX] Use untyped (.b) integer registers in PTX.

This bring LLVM-generated PTX closer to what nvcc generates and avoids
triggering issues in ptxas.

For instance, ptxas does not accept .s16 (or .u16) registers as operands
for .fp16 instructions.

Differential Revision: https://reviews.llvm.org/D23460

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278568 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Artem Belevich 2016-08-12 22:02:19 +00:00
parent d20e86ca8f
commit e10646be3b
2 changed files with 90 additions and 3 deletions

View File

@ -33,11 +33,29 @@ std::string getNVPTXRegClassName(TargetRegisterClass const *RC) {
if (RC == &NVPTX::Float64RegsRegClass) {
return ".f64";
} else if (RC == &NVPTX::Int64RegsRegClass) {
return ".s64";
// We use untyped (.b) integer registers here as NVCC does.
// Correctness of generated code does not depend on register type,
// but using .s/.u registers runs into ptxas bug that prevents
// assembly of otherwise valid PTX into SASS. Despite PTX ISA
// specifying only argument size for fp16 instructions, ptxas does
// not allow using .s16 or .u16 arguments for .fp16
// instructions. At the same time it allows using .s32/.u32
// arguments for .fp16v2 instructions:
//
// .reg .b16 rb16
// .reg .s16 rs16
// add.f16 rb16,rb16,rb16; // OK
// add.f16 rs16,rs16,rs16; // Arguments mismatch for instruction 'add'
// but:
// .reg .b32 rb32
// .reg .s32 rs32
// add.f16v2 rb32,rb32,rb32; // OK
// add.f16v2 rs32,rs32,rs32; // OK
return ".b64";
} else if (RC == &NVPTX::Int32RegsRegClass) {
return ".s32";
return ".b32";
} else if (RC == &NVPTX::Int16RegsRegClass) {
return ".s16";
return ".b16";
} else if (RC == &NVPTX::Int1RegsRegClass) {
return ".pred";
} else if (RC == &NVPTX::SpecialRegsRegClass) {

View File

@ -0,0 +1,69 @@
; Verify register types we generate in PTX.
; RUN: llc -O0 < %s -march=nvptx -mcpu=sm_20 | FileCheck %s
; RUN: llc -O0 < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s
; RUN: llc -O0 < %s -march=nvptx -mcpu=sm_20 | FileCheck %s -check-prefixes=NO8BIT
; RUN: llc -O0 < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s -check-prefixes=NO8BIT
; CHECK-LABEL: .visible .func func()
; NO8BIT-LABEL: .visible .func func()
define void @func() {
entry:
%s8 = alloca i8, align 1
%u8 = alloca i8, align 1
%s16 = alloca i16, align 2
%u16 = alloca i16, align 2
; Both 8- and 16-bit integers are packed into 16-bit registers.
; CHECK-DAG: .reg .b16 %rs<
; We should not generate 8-bit registers.
; NO8BIT-NOT: .reg .{{[bsu]}}8
%s32 = alloca i32, align 4
%u32 = alloca i32, align 4
; CHECK-DAG: .reg .b32 %r<
%s64 = alloca i64, align 8
%u64 = alloca i64, align 8
; CHECK-DAG: .reg .b64 %rd<
%f32 = alloca float, align 4
; CHECK-DAG: .reg .f32 %f<
%f64 = alloca double, align 8
; CHECK-DAG: .reg .f64 %fd<
; Verify that we use correct register types.
store i8 1, i8* %s8, align 1
; CHECK: mov.u16 [[R1:%rs[0-9]]], 1;
; CHECK-NEXT: st.u8 {{.*}}, [[R1]]
store i8 2, i8* %u8, align 1
; CHECK: mov.u16 [[R2:%rs[0-9]]], 2;
; CHECK-NEXT: st.u8 {{.*}}, [[R2]]
store i16 3, i16* %s16, align 2
; CHECK: mov.u16 [[R3:%rs[0-9]]], 3;
; CHECK-NEXT: st.u16 {{.*}}, [[R3]]
store i16 4, i16* %u16, align 2
; CHECK: mov.u16 [[R4:%rs[0-9]]], 4;
; CHECK-NEXT: st.u16 {{.*}}, [[R4]]
store i32 5, i32* %s32, align 4
; CHECK: mov.u32 [[R5:%r[0-9]]], 5;
; CHECK-NEXT: st.u32 {{.*}}, [[R5]]
store i32 6, i32* %u32, align 4
; CHECK: mov.u32 [[R6:%r[0-9]]], 6;
; CHECK-NEXT: st.u32 {{.*}}, [[R6]]
store i64 7, i64* %s64, align 8
; CHECK: mov.u64 [[R7:%rd[0-9]]], 7;
; CHECK-NEXT: st.u64 {{.*}}, [[R7]]
store i64 8, i64* %u64, align 8
; CHECK: mov.u64 [[R8:%rd[0-9]]], 8;
; CHECK-NEXT: st.u64 {{.*}}, [[R8]]
; FP constants are stored via integer registers, but that's an
; implementation detail that's irrelevant here.
store float 9.000000e+00, float* %f32, align 4
store double 1.000000e+01, double* %f64, align 8
; Instead, we force a load into a register and then verify register type.
%f32v = load volatile float, float* %f32, align 4
; CHECK: ld.volatile.f32 %f{{[0-9]+}}
%f64v = load volatile double, double* %f64, align 8
; CHECK: ld.volatile.f64 %fd{{[0-9]+}}
ret void
; CHECK: ret;
; NO8BIT: ret;
}