mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-19 10:53:55 +00:00
[LCG] Add the first round of mutation support to the lazy call graph.
This implements the core functionality necessary to remove an edge from the call graph and correctly update both the basic graph and the SCC structure. As part of that it has to run a tiny (in number of nodes) Tarjan-style DFS walk of an SCC being mutated to compute newly formed SCCs, etc. This is *very rough* and a WIP. I have a bunch of FIXMEs for code cleanup that will reduce the boilerplate in this change substantially. I also have a bunch of simplifications to various parts of both algorithms that I want to make, but first I'd like to have a more holistic picture. Ideally, I'd also like more testing. I'll probably add quite a few more unit tests as I go here to cover the various different aspects and corner cases of removing edges from the graph. Still, this is, so far, successfully updating the SCC graph in-place without disrupting the identity established for the existing SCCs even when we do challenging things like delete the critical edge that made an SCC cycle at all and have to reform things as a tree of smaller SCCs. Getting this to work is really critical for the new pass manager as it is going to associate significant state with the SCC instance and needs it to be stable. That is also the motivation behind the return of the newly formed SCCs. Eventually, I'll wire this all the way up to the public API so that the pass manager can use it to correctly re-enqueue newly formed SCCs into a fresh postorder traversal. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206968 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
c2547d0429
commit
e42618b4bc
@ -223,6 +223,12 @@ public:
|
||||
|
||||
SCC() {}
|
||||
|
||||
void removeEdge(LazyCallGraph &G, Function &Caller, Function &Callee,
|
||||
SCC &CalleeC);
|
||||
|
||||
SmallVector<LazyCallGraph::SCC *, 1>
|
||||
removeInternalEdge(LazyCallGraph &G, Node &Caller, Node &Callee);
|
||||
|
||||
public:
|
||||
typedef SmallVectorImpl<Node *>::const_iterator iterator;
|
||||
typedef SmallSetVector<SCC *, 1>::const_iterator parent_iterator;
|
||||
@ -334,6 +340,14 @@ public:
|
||||
return insertInto(F, N);
|
||||
}
|
||||
|
||||
/// \brief Update the call graph after deleting an edge.
|
||||
void removeEdge(Node &Caller, Function &Callee);
|
||||
|
||||
/// \brief Update the call graph after deleting an edge.
|
||||
void removeEdge(Function &Caller, Function &Callee) {
|
||||
return removeEdge(*get(Caller), Callee);
|
||||
}
|
||||
|
||||
private:
|
||||
/// \brief Allocator that holds all the call graph nodes.
|
||||
SpecificBumpPtrAllocator<Node> BPA;
|
||||
|
@ -131,6 +131,237 @@ LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
void LazyCallGraph::SCC::removeEdge(LazyCallGraph &G, Function &Caller,
|
||||
Function &Callee, SCC &CalleeC) {
|
||||
assert(std::find(G.LeafSCCs.begin(), G.LeafSCCs.end(), this) ==
|
||||
G.LeafSCCs.end() &&
|
||||
"Cannot have a leaf SCC caller with a different SCC callee.");
|
||||
|
||||
bool HasOtherCallToCalleeC = false;
|
||||
bool HasOtherCallOutsideSCC = false;
|
||||
for (Node *N : *this) {
|
||||
for (Node *Callee : *N) {
|
||||
SCC *OtherCalleeC = G.SCCMap.lookup(&Callee->F);
|
||||
if (OtherCalleeC == &CalleeC) {
|
||||
HasOtherCallToCalleeC = true;
|
||||
break;
|
||||
}
|
||||
if (OtherCalleeC != this)
|
||||
HasOtherCallOutsideSCC = true;
|
||||
}
|
||||
if (HasOtherCallToCalleeC)
|
||||
break;
|
||||
}
|
||||
// Because the SCCs form a DAG, deleting such an edge cannot change the set
|
||||
// of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
|
||||
// the caller no longer a parent of the callee. Walk the other call edges
|
||||
// in the caller to tell.
|
||||
if (!HasOtherCallToCalleeC) {
|
||||
bool Removed = CalleeC.ParentSCCs.remove(this);
|
||||
(void)Removed;
|
||||
assert(Removed &&
|
||||
"Did not find the caller SCC in the callee SCC's parent list!");
|
||||
|
||||
// It may orphan an SCC if it is the last edge reaching it, but that does
|
||||
// not violate any invariants of the graph.
|
||||
if (CalleeC.ParentSCCs.empty())
|
||||
DEBUG(dbgs() << "LCG: Update removing " << Caller.getName() << " -> "
|
||||
<< Callee.getName() << " edge orphaned the callee's SCC!\n");
|
||||
}
|
||||
|
||||
// It may make the Caller SCC a leaf SCC.
|
||||
if (!HasOtherCallOutsideSCC)
|
||||
G.LeafSCCs.push_back(this);
|
||||
}
|
||||
|
||||
SmallVector<LazyCallGraph::SCC *, 1>
|
||||
LazyCallGraph::SCC::removeInternalEdge(LazyCallGraph &G, Node &Caller,
|
||||
Node &Callee) {
|
||||
// We return a list of the resulting SCCs, where 'this' is always the first
|
||||
// element.
|
||||
SmallVector<SCC *, 1> ResultSCCs;
|
||||
ResultSCCs.push_back(this);
|
||||
|
||||
// We're going to do a full mini-Tarjan's walk using a local stack here.
|
||||
int NextDFSNumber = 1;
|
||||
SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
|
||||
|
||||
// The worklist is every node in the original SCC. FIXME: switch the SCC to
|
||||
// use a SmallSetVector and swap here.
|
||||
SmallSetVector<Node *, 1> Worklist;
|
||||
for (Node *N : Nodes) {
|
||||
// Clear these to 0 while we re-run Tarjan's over the SCC.
|
||||
N->DFSNumber = 0;
|
||||
N->LowLink = 0;
|
||||
Worklist.insert(N);
|
||||
}
|
||||
|
||||
// The callee can already reach every node in this SCC (by definition). It is
|
||||
// the only node we know will stay inside this SCC. Everything which
|
||||
// transitively reaches Callee will also remain in the SCC. To model this we
|
||||
// incrementally add any chain of nodes which reaches something in the new
|
||||
// node set to the new node set. This short circuits one side of the Tarjan's
|
||||
// walk.
|
||||
SmallSetVector<Node *, 1> NewNodes;
|
||||
NewNodes.insert(&Callee);
|
||||
|
||||
for (;;) {
|
||||
if (DFSStack.empty()) {
|
||||
if (Worklist.empty())
|
||||
break;
|
||||
Node *N = Worklist.pop_back_val();
|
||||
DFSStack.push_back(std::make_pair(N, N->begin()));
|
||||
}
|
||||
|
||||
Node *N = DFSStack.back().first;
|
||||
|
||||
// Check if we have reached a node in the new (known connected) set. If so,
|
||||
// the entire stack is necessarily in that set and we can re-start.
|
||||
if (NewNodes.count(N)) {
|
||||
DFSStack.pop_back();
|
||||
while (!DFSStack.empty())
|
||||
NewNodes.insert(DFSStack.pop_back_val().first);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (N->DFSNumber == 0) {
|
||||
N->LowLink = N->DFSNumber = NextDFSNumber++;
|
||||
Worklist.remove(N);
|
||||
}
|
||||
|
||||
auto SI = DFSStack.rbegin();
|
||||
bool PushedChildNode = false;
|
||||
do {
|
||||
N = SI->first;
|
||||
for (auto I = SI->second, E = N->end(); I != E; ++I) {
|
||||
Node *ChildN = *I;
|
||||
// If this child isn't currently in this SCC, no need to process it.
|
||||
// However, we do need to remove this SCC from its SCC's parent set.
|
||||
SCC *ChildSCC = G.SCCMap.lookup(&ChildN->F);
|
||||
assert(ChildSCC &&
|
||||
"Everything reachable must already be in *some* SCC");
|
||||
if (ChildSCC != this) {
|
||||
ChildSCC->ParentSCCs.remove(this);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ChildN->DFSNumber == 0) {
|
||||
// Mark that we should start at this child when next this node is the
|
||||
// top of the stack. We don't start at the next child to ensure this
|
||||
// child's lowlink is reflected.
|
||||
SI->second = I;
|
||||
|
||||
// Recurse onto this node via a tail call.
|
||||
DFSStack.push_back(std::make_pair(ChildN, ChildN->begin()));
|
||||
PushedChildNode = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// Track the lowest link of the childen, if any are still in the stack.
|
||||
// Any child not on the stack will have a LowLink of -1.
|
||||
assert(ChildN->LowLink != 0 &&
|
||||
"Impossible with a non-zero DFS number.");
|
||||
if (ChildN->LowLink >= 0 && ChildN->LowLink < N->LowLink)
|
||||
N->LowLink = ChildN->LowLink;
|
||||
}
|
||||
if (!PushedChildNode)
|
||||
// No more children to process for this stack entry.
|
||||
SI->second = N->end();
|
||||
|
||||
++SI;
|
||||
// If nothing is new on the stack and this isn't the SCC root, walk
|
||||
// upward.
|
||||
} while (!PushedChildNode && N->LowLink != N->DFSNumber &&
|
||||
SI != DFSStack.rend());
|
||||
|
||||
if (PushedChildNode)
|
||||
continue;
|
||||
|
||||
// Form the new SCC out of the top of the DFS stack.
|
||||
ResultSCCs.push_back(G.formSCCFromDFSStack(DFSStack, SI.base()));
|
||||
}
|
||||
|
||||
// Replace this SCC with the NewNodes we collected above.
|
||||
// FIXME: Simplify this when the SCC's datastructure is just a list.
|
||||
Nodes.clear();
|
||||
NodeSet.clear();
|
||||
|
||||
// Now we need to reconnect the current SCC to the graph.
|
||||
bool IsLeafSCC = true;
|
||||
for (Node *N : NewNodes) {
|
||||
N->DFSNumber = -1;
|
||||
N->LowLink = -1;
|
||||
Nodes.push_back(N);
|
||||
NodeSet.insert(&N->getFunction());
|
||||
for (Node *ChildN : *N) {
|
||||
if (NewNodes.count(ChildN))
|
||||
continue;
|
||||
SCC *ChildSCC = G.SCCMap.lookup(&ChildN->getFunction());
|
||||
assert(ChildSCC &&
|
||||
"Must have all child SCCs processed when building a new SCC!");
|
||||
ChildSCC->ParentSCCs.insert(this);
|
||||
IsLeafSCC = false;
|
||||
}
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
if (ResultSCCs.size() > 1)
|
||||
assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
|
||||
"SCCs by removing this edge.");
|
||||
if (!std::any_of(G.LeafSCCs.begin(), G.LeafSCCs.end(),
|
||||
[&](SCC *C) { return C == this; }))
|
||||
assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
|
||||
"SCCs before we removed this edge.");
|
||||
#endif
|
||||
// If this SCC stopped being a leaf through this edge removal, remove it from
|
||||
// the leaf SCC list.
|
||||
if (!IsLeafSCC && ResultSCCs.size() > 1)
|
||||
G.LeafSCCs.erase(std::remove(G.LeafSCCs.begin(), G.LeafSCCs.end(), this),
|
||||
G.LeafSCCs.end());
|
||||
|
||||
// Return the new list of SCCs.
|
||||
return ResultSCCs;
|
||||
}
|
||||
|
||||
void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
|
||||
auto IndexMapI = CallerN.CalleeIndexMap.find(&Callee);
|
||||
assert(IndexMapI != CallerN.CalleeIndexMap.end() &&
|
||||
"Callee not in the callee set for the caller?");
|
||||
|
||||
Node *CalleeN = CallerN.Callees[IndexMapI->second].dyn_cast<Node *>();
|
||||
CallerN.Callees.erase(CallerN.Callees.begin() + IndexMapI->second);
|
||||
CallerN.CalleeIndexMap.erase(IndexMapI);
|
||||
|
||||
SCC *CallerC = SCCMap.lookup(&CallerN.F);
|
||||
if (!CallerC) {
|
||||
// We can only remove edges when the edge isn't actively participating in
|
||||
// a DFS walk. Either it must have been popped into an SCC, or it must not
|
||||
// yet have been reached by the DFS walk. Assert the latter here.
|
||||
assert(std::all_of(DFSStack.begin(), DFSStack.end(),
|
||||
[&](const std::pair<Node *, iterator> &StackEntry) {
|
||||
return StackEntry.first != &CallerN;
|
||||
}) &&
|
||||
"Found the caller on the DFSStack!");
|
||||
return;
|
||||
}
|
||||
|
||||
assert(CalleeN && "If the caller is in an SCC, we have to have explored all "
|
||||
"its transitively called functions.");
|
||||
|
||||
SCC *CalleeC = SCCMap.lookup(&Callee);
|
||||
assert(CalleeC &&
|
||||
"The caller has an SCC, and thus by necessity so does the callee.");
|
||||
|
||||
// The easy case is when they are different SCCs.
|
||||
if (CallerC != CalleeC) {
|
||||
CallerC->removeEdge(*this, CallerN.getFunction(), Callee, *CalleeC);
|
||||
return;
|
||||
}
|
||||
|
||||
// The hard case is when we remove an edge within a SCC. This may cause new
|
||||
// SCCs to need to be added to the graph.
|
||||
CallerC->removeInternalEdge(*this, CallerN, *CalleeN);
|
||||
}
|
||||
|
||||
LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
||||
return new (MappedN = BPA.Allocate()) Node(*this, F);
|
||||
}
|
||||
@ -212,6 +443,8 @@ LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
|
||||
if (SI->first->DFSNumber == 0) {
|
||||
// This node hasn't been visited before, assign it a DFS number and remove
|
||||
// it from the entry set.
|
||||
assert(!SCCMap.count(&SI->first->getFunction()) &&
|
||||
"Found a node with 0 DFS number but already in an SCC!");
|
||||
SI->first->LowLink = SI->first->DFSNumber = NextDFSNumber++;
|
||||
SCCEntryNodes.remove(&SI->first->getFunction());
|
||||
}
|
||||
|
@ -305,4 +305,91 @@ TEST(LazyCallGraphTest, MultiArmSCC) {
|
||||
EXPECT_EQ(SCC, CG.lookupSCC(E->getFunction()));
|
||||
}
|
||||
|
||||
TEST(LazyCallGraphTest, InterSCCEdgeRemoval) {
|
||||
std::unique_ptr<Module> M = parseAssembly(
|
||||
"define void @a() {\n"
|
||||
"entry:\n"
|
||||
" call void @b()\n"
|
||||
" ret void\n"
|
||||
"}\n"
|
||||
"define void @b() {\n"
|
||||
"entry:\n"
|
||||
" ret void\n"
|
||||
"}\n");
|
||||
LazyCallGraph CG(*M);
|
||||
|
||||
// Force the graph to be fully expanded.
|
||||
for (LazyCallGraph::SCC *C : CG.postorder_sccs())
|
||||
(void)C;
|
||||
|
||||
LazyCallGraph::Node *A = CG.lookup(lookupFunction(*M, "a"));
|
||||
LazyCallGraph::Node *B = CG.lookup(lookupFunction(*M, "b"));
|
||||
LazyCallGraph::SCC *AC = CG.lookupSCC(lookupFunction(*M, "a"));
|
||||
LazyCallGraph::SCC *BC = CG.lookupSCC(lookupFunction(*M, "b"));
|
||||
|
||||
EXPECT_EQ("b", A->begin()->getFunction().getName());
|
||||
EXPECT_EQ(B->end(), B->begin());
|
||||
EXPECT_EQ(AC, *BC->parent_begin());
|
||||
|
||||
CG.removeEdge(*A, lookupFunction(*M, "b"));
|
||||
|
||||
EXPECT_EQ(A->end(), A->begin());
|
||||
EXPECT_EQ(B->end(), B->begin());
|
||||
EXPECT_EQ(BC->parent_end(), BC->parent_begin());
|
||||
}
|
||||
|
||||
TEST(LazyCallGraphTest, IntraSCCEdgeRemoval) {
|
||||
// A nice fully connected (including self-edges) SCC.
|
||||
std::unique_ptr<Module> M1 = parseAssembly(
|
||||
"define void @a() {\n"
|
||||
"entry:\n"
|
||||
" call void @a()\n"
|
||||
" call void @b()\n"
|
||||
" call void @c()\n"
|
||||
" ret void\n"
|
||||
"}\n"
|
||||
"define void @b() {\n"
|
||||
"entry:\n"
|
||||
" call void @a()\n"
|
||||
" call void @b()\n"
|
||||
" call void @c()\n"
|
||||
" ret void\n"
|
||||
"}\n"
|
||||
"define void @c() {\n"
|
||||
"entry:\n"
|
||||
" call void @a()\n"
|
||||
" call void @b()\n"
|
||||
" call void @c()\n"
|
||||
" ret void\n"
|
||||
"}\n");
|
||||
LazyCallGraph CG1(*M1);
|
||||
|
||||
// Force the graph to be fully expanded.
|
||||
auto SCCI = CG1.postorder_scc_begin();
|
||||
LazyCallGraph::SCC *SCC = *SCCI++;
|
||||
EXPECT_EQ(CG1.postorder_scc_end(), SCCI);
|
||||
|
||||
LazyCallGraph::Node *A = CG1.lookup(lookupFunction(*M1, "a"));
|
||||
LazyCallGraph::Node *B = CG1.lookup(lookupFunction(*M1, "b"));
|
||||
LazyCallGraph::Node *C = CG1.lookup(lookupFunction(*M1, "c"));
|
||||
EXPECT_EQ(SCC, CG1.lookupSCC(A->getFunction()));
|
||||
EXPECT_EQ(SCC, CG1.lookupSCC(B->getFunction()));
|
||||
EXPECT_EQ(SCC, CG1.lookupSCC(C->getFunction()));
|
||||
|
||||
// Remove the edge from b -> a, which should leave the 3 functions still in
|
||||
// a single connected component because of a -> b -> c -> a.
|
||||
CG1.removeEdge(*B, A->getFunction());
|
||||
EXPECT_EQ(SCC, CG1.lookupSCC(A->getFunction()));
|
||||
EXPECT_EQ(SCC, CG1.lookupSCC(B->getFunction()));
|
||||
EXPECT_EQ(SCC, CG1.lookupSCC(C->getFunction()));
|
||||
|
||||
// Remove the edge from c -> a, which should leave 'a' in the original SCC
|
||||
// and form a new SCC for 'b' and 'c'.
|
||||
CG1.removeEdge(*C, A->getFunction());
|
||||
EXPECT_EQ(SCC, CG1.lookupSCC(A->getFunction()));
|
||||
EXPECT_EQ(1, std::distance(SCC->begin(), SCC->end()));
|
||||
LazyCallGraph::SCC *SCC2 = CG1.lookupSCC(B->getFunction());
|
||||
EXPECT_EQ(SCC2, CG1.lookupSCC(C->getFunction()));
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user