SLPVectorizer: Make it a function pass and add code for hoisting the vector-gather sequence out of loops.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179562 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nadav Rotem 2013-04-15 22:00:26 +00:00
parent c9363ef67a
commit e9a4411db4
5 changed files with 317 additions and 165 deletions

View File

@ -213,10 +213,8 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
if (SLPVectorize) {
MPM.add(createSLPVectorizerPass());
MPM.add(createEarlyCSEPass());
}
if (SLPVectorize)
MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
if (BBVectorize) {
MPM.add(createBBVectorizePass());

View File

@ -24,6 +24,7 @@
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
@ -45,13 +46,13 @@ SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
namespace {
/// The SLPVectorizer Pass.
struct SLPVectorizer : public BasicBlockPass {
struct SLPVectorizer : public FunctionPass {
typedef std::map<Value*, BoUpSLP::StoreList> StoreListMap;
/// Pass identification, replacement for typeid
static char ID;
explicit SLPVectorizer() : BasicBlockPass(ID) {
explicit SLPVectorizer() : FunctionPass(ID) {
initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
}
@ -59,183 +60,257 @@ struct SLPVectorizer : public BasicBlockPass {
DataLayout *DL;
TargetTransformInfo *TTI;
AliasAnalysis *AA;
LoopInfo *LI;
/// \brief Collect memory references and sort them according to their base
/// object. We sort the stores to their base objects to reduce the cost of the
/// quadratic search on the stores. TODO: We can further reduce this cost
/// if we flush the chain creation every time we run into a memory barrier.
bool collectStores(BasicBlock *BB, BoUpSLP &R) {
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
StoreInst *SI = dyn_cast<StoreInst>(it);
if (!SI)
continue;
// Check that the pointer points to scalars.
if (SI->getValueOperand()->getType()->isAggregateType())
return false;
// Find the base of the GEP.
Value *Ptr = SI->getPointerOperand();
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
Ptr = GEP->getPointerOperand();
// Save the store locations.
StoreRefs[Ptr].push_back(SI);
}
return true;
}
bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
if (!A || !B) return false;
BoUpSLP::ValueList VL;
VL.push_back(A);
VL.push_back(B);
int Cost = R.getTreeCost(VL);
int ExtrCost = R.getScalarizationCost(VL);
DEBUG(dbgs()<<"SLP: Cost of pair:" << Cost <<
" Cost of extract:" << ExtrCost << ".\n");
if ((Cost+ExtrCost) >= -SLPCostThreshold) return false;
DEBUG(dbgs()<<"SLP: Vectorizing pair.\n");
R.vectorizeArith(VL);
return true;
}
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
if (!V) return false;
// Try to vectorize V.
if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
return true;
BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
// Try to skip B.
if (B && B->hasOneUse()) {
BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
if (tryToVectorizePair(A, B0, R)) {
B->moveBefore(V);
return true;
}
if (tryToVectorizePair(A, B1, R)) {
B->moveBefore(V);
return true;
}
}
// Try to slip A.
if (A && A->hasOneUse()) {
BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
if (tryToVectorizePair(A0, B, R)) {
A->moveBefore(V);
return true;
}
if (tryToVectorizePair(A1, B, R)) {
A->moveBefore(V);
return true;
}
}
return 0;
}
bool vectorizeReductions(BasicBlock *BB, BoUpSLP &R) {
bool Changed = false;
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
if (isa<DbgInfoIntrinsic>(it)) continue;
// Try to vectorize reductions that use PHINodes.
if (PHINode *P = dyn_cast<PHINode>(it)) {
// Check that the PHI is a reduction PHI.
if (P->getNumIncomingValues() != 2) return Changed;
Value *Rdx = (P->getIncomingBlock(0) == BB ? P->getIncomingValue(0) :
(P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) :
0));
// Check if this is a Binary Operator.
BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
if (!BI)
continue;
Value *Inst = BI->getOperand(0);
if (Inst == P) Inst = BI->getOperand(1);
Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
continue;
}
// Try to vectorize trees that start at compare instructions.
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
Changed |= true;
continue;
}
for (int i = 0; i < 2; ++i)
if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
Changed |= tryToVectorize(BI, R);
continue;
}
}
return Changed;
}
bool vectorizeStoreChains(BoUpSLP &R) {
bool Changed = false;
// Attempt to sort and vectorize each of the store-groups.
for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
it != e; ++it) {
if (it->second.size() < 2)
continue;
DEBUG(dbgs()<<"SLP: Analyzing a store chain of length " <<
it->second.size() << ".\n");
Changed |= R.vectorizeStores(it->second, -SLPCostThreshold);
}
return Changed;
}
virtual bool runOnBasicBlock(BasicBlock &BB) {
virtual bool runOnFunction(Function &F) {
SE = &getAnalysis<ScalarEvolution>();
DL = getAnalysisIfAvailable<DataLayout>();
TTI = &getAnalysis<TargetTransformInfo>();
AA = &getAnalysis<AliasAnalysis>();
LI = &getAnalysis<LoopInfo>();
StoreRefs.clear();
bool Changed = false;
// Must have DataLayout. We can't require it because some tests run w/o
// triple.
if (!DL)
return false;
// Use the bollom up slp vectorizer to construct chains that start with
// he store instructions.
BoUpSLP R(&BB, SE, DL, TTI, AA);
for (Function::iterator it = F.begin(), e = F.end(); it != e; ++it) {
BasicBlock *BB = it;
bool BBChanged = false;
// Vectorize trees that end at reductions.
bool Changed = vectorizeReductions(&BB, R);
// Use the bollom up slp vectorizer to construct chains that start with
// he store instructions.
BoUpSLP R(BB, SE, DL, TTI, AA);
// Vectorize trees that end at stores.
if (collectStores(&BB, R)) {
DEBUG(dbgs()<<"SLP: Found stores to vectorize.\n");
Changed |= vectorizeStoreChains(R);
// Vectorize trees that end at reductions.
BBChanged |= vectorizeReductions(BB, R);
// Vectorize trees that end at stores.
if (collectStores(BB, R)) {
DEBUG(dbgs()<<"SLP: Found stores to vectorize.\n");
BBChanged |= vectorizeStoreChains(R);
}
// Try to hoist some of the scalarization code to the preheader.
if (BBChanged) hoistGatherSequence(LI, BB, R);
Changed |= BBChanged;
}
if (Changed) {
DEBUG(dbgs()<<"SLP: vectorized \""<<BB.getParent()->getName()<<"\"\n");
DEBUG(verifyFunction(*BB.getParent()));
DEBUG(dbgs()<<"SLP: vectorized \""<<F.getName()<<"\"\n");
DEBUG(verifyFunction(F));
}
return Changed;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
BasicBlockPass::getAnalysisUsage(AU);
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<ScalarEvolution>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetTransformInfo>();
AU.addRequired<LoopInfo>();
}
private:
/// \brief Collect memory references and sort them according to their base
/// object. We sort the stores to their base objects to reduce the cost of the
/// quadratic search on the stores. TODO: We can further reduce this cost
/// if we flush the chain creation every time we run into a memory barrier.
bool collectStores(BasicBlock *BB, BoUpSLP &R);
/// \brief Try to vectorize a chain that starts at two arithmetic instrs.
bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
/// \brief Try to vectorize a chain that may start at the operands of \V;
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
/// \brief Vectorize the stores that were collected in StoreRefs.
bool vectorizeStoreChains(BoUpSLP &R);
/// \brief Try to hoist gather sequences outside of the loop in cases where
/// all of the sources are loop invariant.
void hoistGatherSequence(LoopInfo *LI, BasicBlock *BB, BoUpSLP &R);
/// \brief Scan the basic block and look for reductions that may start a
/// vectorization chain.
bool vectorizeReductions(BasicBlock *BB, BoUpSLP &R);
private:
StoreListMap StoreRefs;
};
bool SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
StoreRefs.clear();
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
StoreInst *SI = dyn_cast<StoreInst>(it);
if (!SI)
continue;
// Check that the pointer points to scalars.
if (SI->getValueOperand()->getType()->isAggregateType())
return false;
// Find the base of the GEP.
Value *Ptr = SI->getPointerOperand();
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
Ptr = GEP->getPointerOperand();
// Save the store locations.
StoreRefs[Ptr].push_back(SI);
}
return true;
}
bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
if (!A || !B) return false;
BoUpSLP::ValueList VL;
VL.push_back(A);
VL.push_back(B);
int Cost = R.getTreeCost(VL);
int ExtrCost = R.getScalarizationCost(VL);
DEBUG(dbgs()<<"SLP: Cost of pair:" << Cost <<
" Cost of extract:" << ExtrCost << ".\n");
if ((Cost+ExtrCost) >= -SLPCostThreshold) return false;
DEBUG(dbgs()<<"SLP: Vectorizing pair.\n");
R.vectorizeArith(VL);
return true;
}
bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
if (!V) return false;
// Try to vectorize V.
if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
return true;
BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
// Try to skip B.
if (B && B->hasOneUse()) {
BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
if (tryToVectorizePair(A, B0, R)) {
B->moveBefore(V);
return true;
}
if (tryToVectorizePair(A, B1, R)) {
B->moveBefore(V);
return true;
}
}
// Try to slip A.
if (A && A->hasOneUse()) {
BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
if (tryToVectorizePair(A0, B, R)) {
A->moveBefore(V);
return true;
}
if (tryToVectorizePair(A1, B, R)) {
A->moveBefore(V);
return true;
}
}
return 0;
}
bool SLPVectorizer::vectorizeReductions(BasicBlock *BB, BoUpSLP &R) {
bool Changed = false;
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
if (isa<DbgInfoIntrinsic>(it)) continue;
// Try to vectorize reductions that use PHINodes.
if (PHINode *P = dyn_cast<PHINode>(it)) {
// Check that the PHI is a reduction PHI.
if (P->getNumIncomingValues() != 2) return Changed;
Value *Rdx = (P->getIncomingBlock(0) == BB ? P->getIncomingValue(0) :
(P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) :
0));
// Check if this is a Binary Operator.
BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
if (!BI)
continue;
Value *Inst = BI->getOperand(0);
if (Inst == P) Inst = BI->getOperand(1);
Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
continue;
}
// Try to vectorize trees that start at compare instructions.
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
Changed |= true;
continue;
}
for (int i = 0; i < 2; ++i)
if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
Changed |= tryToVectorize(BI, R);
continue;
}
}
return Changed;
}
bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
bool Changed = false;
// Attempt to sort and vectorize each of the store-groups.
for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
it != e; ++it) {
if (it->second.size() < 2)
continue;
DEBUG(dbgs()<<"SLP: Analyzing a store chain of length " <<
it->second.size() << ".\n");
Changed |= R.vectorizeStores(it->second, -SLPCostThreshold);
}
return Changed;
}
void SLPVectorizer::hoistGatherSequence(LoopInfo *LI, BasicBlock *BB,
BoUpSLP &R) {
// Check if this block is inside a loop.
Loop *L = LI->getLoopFor(BB);
if (!L)
return;
// Check if it has a preheader.
BasicBlock *PreHeader = L->getLoopPreheader();
if (!PreHeader)
return;
// Mark the insertion point for the block.
Instruction *Location = PreHeader->getTerminator();
BoUpSLP::ValueList &Gathers = R.getGatherSeqInstructions();
for (BoUpSLP::ValueList::iterator it = Gathers.begin(), e = Gathers.end();
it != e; ++it) {
InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
// The InsertElement sequence can be simplified into a constant.
if (!Insert)
continue;
// If the vector or the element that we insert into it are
// instructions that are defined in this basic block then we can't
// hoist this instruction.
Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
if (CurrVec && L->contains(CurrVec)) continue;
if (NewElem && L->contains(NewElem)) continue;
// We can hoist this instruction. Move it to the pre-header.
Insert->moveBefore(Location);
}
}
} // end anonymous namespace
char SLPVectorizer::ID = 0;

View File

@ -511,8 +511,15 @@ Instruction *BoUpSLP::GetLastInstr(ValueList &VL, unsigned VF) {
Value *BoUpSLP::Scalarize(ValueList &VL, VectorType *Ty) {
IRBuilder<> Builder(GetLastInstr(VL, Ty->getNumElements()));
Value *Vec = UndefValue::get(Ty);
for (unsigned i=0; i < Ty->getNumElements(); ++i)
for (unsigned i=0; i < Ty->getNumElements(); ++i) {
// Generate the 'InsertElement' instruction.
Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
// Remember that this instruction is used as part of a 'gather' sequence.
// The caller of the bottom-up slp vectorizer can try to hoist the sequence
// if the users are outside of the basic block.
GatherInstructions.push_back(Vec);
}
return Vec;
}

View File

@ -71,6 +71,11 @@ struct BoUpSLP {
/// \brief Vectorize a group of scalars into a vector tree.
void vectorizeArith(ValueList &Operands);
/// \returns the list of new instructions that were added in order to collect
/// scalars into vectors. This list can be used to further optimize the gather
/// sequences.
ValueList &getGatherSeqInstructions() {return GatherInstructions; }
private:
/// \brief This method contains the recursive part of getTreeCost.
int getTreeCost_rec(ValueList &VL, unsigned Depth);
@ -107,11 +112,11 @@ private:
/// \returns a vector from a collection of scalars in \p VL.
Value *Scalarize(ValueList &VL, VectorType *Ty);
private:
// Maps instructions to numbers and back.
/// Maps instructions to numbers and back.
SmallDenseMap<Value*, int> InstrIdx;
// Maps integers to Instructions.
/// Maps integers to Instructions.
std::vector<Instruction*> InstrVec;
// -- containers that are used during getTreeCost -- //
@ -121,21 +126,29 @@ private:
/// NOTICE: The vectorization methods also use this set.
ValueSet MustScalarize;
// Contains a list of values that are used outside the current tree. This
// set must be reset between runs.
/// Contains a list of values that are used outside the current tree. This
/// set must be reset between runs.
ValueSet MultiUserVals;
// Maps values in the tree to the vector lanes that uses them. This map must
// be reset between runs of getCost.
/// Maps values in the tree to the vector lanes that uses them. This map must
/// be reset between runs of getCost.
std::map<Value*, int> LaneMap;
// A list of instructions to ignore while sinking
// memory instructions. This map must be reset between runs of getCost.
/// A list of instructions to ignore while sinking
/// memory instructions. This map must be reset between runs of getCost.
SmallPtrSet<Value *, 8> MemBarrierIgnoreList;
// -- containers that are used during vectorizeTree -- //
// Maps between the first scalar to the vector. This map must be reset between
// runs.
// -- Containers that are used during vectorizeTree -- //
/// Maps between the first scalar to the vector. This map must be reset
///between runs.
DenseMap<Value*, Value*> VectorizedValues;
// -- Containers that are used after vectorization by the caller -- //
/// A list of instructions that are used when gathering scalars into vectors.
/// In many cases these instructions can be hoisted outside of the BB.
/// Iterating over this list is faster than calling LICM.
ValueList GatherInstructions;
// Analysis and block reference.
BasicBlock *BB;
ScalarEvolution *SE;

View File

@ -0,0 +1,59 @@
; RUN: opt < %s -basicaa -slp-vectorizer -dce -S -mtriple=i386-apple-macosx10.8.0 -mcpu=corei7-avx | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-n8:16:32-S128"
target triple = "i386-apple-macosx10.9.0"
;int foo(int *A, int n, int k) {
; for (int i=0; i < 10000; i+=4) {
; A[i] += n;
; A[i+1] += k;
; A[i+2] += n;
; A[i+3] += k;
; }
;}
; preheader:
;CHECK: entry
;CHECK-NEXT: insertelement
;CHECK-NEXT: insertelement
;CHECK-NEXT: insertelement
;CHECK-NEXT: insertelement
; loop body:
;CHECK: phi
;CHECK: load <4 x i32>
;CHECK: add <4 x i32>
;CHECK: store <4 x i32>
;CHECK: ret
define i32 @foo(i32* nocapture %A, i32 %n, i32 %k) {
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.024 = phi i32 [ 0, %entry ], [ %add10, %for.body ]
%arrayidx = getelementptr inbounds i32* %A, i32 %i.024
%0 = load i32* %arrayidx, align 4
%add = add nsw i32 %0, %n
store i32 %add, i32* %arrayidx, align 4
%add121 = or i32 %i.024, 1
%arrayidx2 = getelementptr inbounds i32* %A, i32 %add121
%1 = load i32* %arrayidx2, align 4
%add3 = add nsw i32 %1, %k
store i32 %add3, i32* %arrayidx2, align 4
%add422 = or i32 %i.024, 2
%arrayidx5 = getelementptr inbounds i32* %A, i32 %add422
%2 = load i32* %arrayidx5, align 4
%add6 = add nsw i32 %2, %n
store i32 %add6, i32* %arrayidx5, align 4
%add723 = or i32 %i.024, 3
%arrayidx8 = getelementptr inbounds i32* %A, i32 %add723
%3 = load i32* %arrayidx8, align 4
%add9 = add nsw i32 %3, %k
store i32 %add9, i32* %arrayidx8, align 4
%add10 = add nsw i32 %i.024, 4
%cmp = icmp slt i32 %add10, 10000
br i1 %cmp, label %for.body, label %for.end
for.end: ; preds = %for.body
ret i32 undef
}