diff --git a/include/llvm/IR/PatternMatch.h b/include/llvm/IR/PatternMatch.h index 072c6c5ece8..542570aaaa2 100644 --- a/include/llvm/IR/PatternMatch.h +++ b/include/llvm/IR/PatternMatch.h @@ -262,7 +262,7 @@ template struct api_pred_ty : public Predicate { }; struct is_one { - bool isValue(const APInt &C) { return C == 1; } + bool isValue(const APInt &C) { return C.isOneValue(); } }; /// \brief Match an integer 1 or a vector with all elements equal to 1. diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp index aa7993b875c..e7b626fa688 100644 --- a/lib/Analysis/InstructionSimplify.cpp +++ b/lib/Analysis/InstructionSimplify.cpp @@ -2391,7 +2391,7 @@ static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { const APInt *C; switch (BO.getOpcode()) { case Instruction::Add: - if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { + if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { // FIXME: If we have both nuw and nsw, we should reduce the range further. if (BO.hasNoUnsignedWrap()) { // 'add nuw x, C' produces [C, UINT_MAX]. @@ -2429,7 +2429,7 @@ static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; } else if (match(BO.getOperand(0), m_APInt(C))) { unsigned ShiftAmount = Width - 1; - if (*C != 0 && BO.isExact()) + if (!C->isNullValue() && BO.isExact()) ShiftAmount = C->countTrailingZeros(); if (C->isNegative()) { // 'ashr C, x' produces [C, C >> (Width-1)] @@ -2450,7 +2450,7 @@ static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { } else if (match(BO.getOperand(0), m_APInt(C))) { // 'lshr C, x' produces [C >> (Width-1), C]. unsigned ShiftAmount = Width - 1; - if (*C != 0 && BO.isExact()) + if (!C->isNullValue() && BO.isExact()) ShiftAmount = C->countTrailingZeros(); Lower = C->lshr(ShiftAmount); Upper = *C + 1; @@ -2512,7 +2512,7 @@ static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { break; case Instruction::UDiv: - if (match(BO.getOperand(1), m_APInt(C)) && *C != 0) { + if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { // 'udiv x, C' produces [0, UINT_MAX / C]. Upper = APInt::getMaxValue(Width).udiv(*C) + 1; } else if (match(BO.getOperand(0), m_APInt(C))) { @@ -2827,14 +2827,14 @@ static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, // - CI2 is one // - CI isn't zero if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || - *CI2Val == 1 || !CI->isZero()) { + CI2Val->isOneValue() || !CI->isZero()) { if (Pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse(RHS->getContext()); if (Pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue(RHS->getContext()); } } - if (CIVal->isSignMask() && *CI2Val == 1) { + if (CIVal->isSignMask() && CI2Val->isOneValue()) { if (Pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse(RHS->getContext()); if (Pred == ICmpInst::ICMP_ULE) diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp index 7204bf51768..ed6386cd689 100644 --- a/lib/Transforms/InstCombine/InstCombineAddSub.cpp +++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp @@ -991,8 +991,9 @@ static Instruction *foldAddWithConstant(BinaryOperator &Add, // Shifts and add used to flip and mask off the low bit: // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 const APInt *C3; - if (*C == 1 && match(Op0, m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C2)), - m_APInt(C3)))) && + if (C->isOneValue() && + match(Op0, + m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3)))) && C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { Value *NotX = Builder.CreateNot(X); return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); @@ -1554,7 +1555,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) { // -(X >>u 31) -> (X >>s 31) // -(X >>s 31) -> (X >>u 31) - if (*Op0C == 0) { + if (Op0C->isNullValue()) { Value *X; const APInt *ShAmt; if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp index 1f8319efb3b..bab28c4405f 100644 --- a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp +++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp @@ -172,12 +172,12 @@ Instruction *InstCombiner::OptAndOp(BinaryOperator *Op, const APInt& AddRHS = OpRHS->getValue(); // Check to see if any bits below the one bit set in AndRHSV are set. - if ((AddRHS & (AndRHSV-1)) == 0) { + if ((AddRHS & (AndRHSV - 1)).isNullValue()) { // If not, the only thing that can effect the output of the AND is // the bit specified by AndRHSV. If that bit is set, the effect of // the XOR is to toggle the bit. If it is clear, then the ADD has // no effect. - if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop + if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop TheAnd.setOperand(0, X); return &TheAnd; } else { @@ -641,7 +641,7 @@ static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, // If there is a conflict, we should actually return a false for the // whole construct. if (((BCst->getValue() & DCst->getValue()) & - (CCst->getValue() ^ ECst->getValue())) != 0) + (CCst->getValue() ^ ECst->getValue())).getBoolValue()) return ConstantInt::get(LHS->getType(), !IsAnd); Value *NewOr1 = Builder->CreateOr(B, D); @@ -748,7 +748,7 @@ foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS, // Special case: get the ordering right when the values wrap around zero. // Ie, we assumed the constants were unsigned when swapping earlier. - if (*C1 == 0 && C2->isAllOnesValue()) + if (C1->isNullValue() && C2->isAllOnesValue()) std::swap(C1, C2); if (*C1 == *C2 - 1) { @@ -840,7 +840,8 @@ Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) { // Check that the low bits are zero. APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); - if ((Low & AndC->getValue()) == 0 && (Low & BigC->getValue()) == 0) { + if ((Low & AndC->getValue()).isNullValue() && + (Low & BigC->getValue()).isNullValue()) { Value *NewAnd = Builder->CreateAnd(V, Low | AndC->getValue()); APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue(); Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N); @@ -1286,7 +1287,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) { } case Instruction::Sub: // -x & 1 -> x & 1 - if (AndRHSMask == 1 && match(Op0LHS, m_Zero())) + if (AndRHSMask.isOneValue() && match(Op0LHS, m_Zero())) return BinaryOperator::CreateAnd(Op0RHS, AndRHS); break; @@ -1295,7 +1296,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) { case Instruction::LShr: // (1 << x) & 1 --> zext(x == 0) // (1 >> x) & 1 --> zext(x == 0) - if (AndRHSMask == 1 && Op0LHS == AndRHS) { + if (AndRHSMask.isOneValue() && Op0LHS == AndRHS) { Value *NewICmp = Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType())); return new ZExtInst(NewICmp, I.getType()); @@ -2033,7 +2034,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) { ConstantInt *C1 = dyn_cast(C); ConstantInt *C2 = dyn_cast(D); if (C1 && C2) { // (A & C1)|(B & C2) - if ((C1->getValue() & C2->getValue()) == 0) { + if ((C1->getValue() & C2->getValue()).isNullValue()) { // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) // iff (C1&C2) == 0 and (N&~C1) == 0 if (match(A, m_Or(m_Value(V1), m_Value(V2))) && @@ -2056,9 +2057,9 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) { // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. ConstantInt *C3 = nullptr, *C4 = nullptr; if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && - (C3->getValue() & ~C1->getValue()) == 0 && + (C3->getValue() & ~C1->getValue()).isNullValue() && match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && - (C4->getValue() & ~C2->getValue()) == 0) { + (C4->getValue() & ~C2->getValue()).isNullValue()) { V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); return BinaryOperator::CreateAnd(V2, Builder->getInt(C1->getValue()|C2->getValue())); diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp index 7d545e39662..79f4a473ff4 100644 --- a/lib/Transforms/InstCombine/InstCombineCalls.cpp +++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp @@ -393,7 +393,7 @@ static Value *simplifyX86immShift(const IntrinsicInst &II, unsigned BitWidth = SVT->getPrimitiveSizeInBits(); // If shift-by-zero then just return the original value. - if (Count == 0) + if (Count.isNullValue()) return Vec; // Handle cases when Shift >= BitWidth. @@ -1395,7 +1395,7 @@ static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) { // If the input to cttz/ctlz is known to be non-zero, // then change the 'ZeroIsUndef' parameter to 'true' // because we know the zero behavior can't affect the result. - if (Known.One != 0 || + if (!Known.One.isNullValue() || isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, &IC.getDominatorTree())) { if (!match(II.getArgOperand(1), m_One())) { diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp index 766939c56df..38e95fb1163 100644 --- a/lib/Transforms/InstCombine/InstCombineCasts.cpp +++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp @@ -661,7 +661,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, // zext (x x>>u31 true if signbit set. // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. - if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || + if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) || (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { if (!DoTransform) return ICI; @@ -688,7 +688,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. - if ((Op1CV == 0 || Op1CV.isPowerOf2()) && + if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) && // This only works for EQ and NE ICI->isEquality()) { // If Op1C some other power of two, convert: @@ -699,7 +699,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, if (!DoTransform) return ICI; bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; - if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { + if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) { // (X&4) == 2 --> false // (X&4) != 2 --> true Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), @@ -717,7 +717,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, In->getName() + ".lobit"); } - if ((Op1CV != 0) == isNE) { // Toggle the low bit. + if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit. Constant *One = ConstantInt::get(In->getType(), 1); In = Builder->CreateXor(In, One); } diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp index 91dc4ff1a65..1ef4acfb058 100644 --- a/lib/Transforms/InstCombine/InstCombineCompares.cpp +++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp @@ -127,7 +127,7 @@ static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, switch (Pred) { case ICmpInst::ICMP_SLT: // True if LHS s< 0 TrueIfSigned = true; - return RHS == 0; + return RHS.isNullValue(); case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 TrueIfSigned = true; return RHS.isAllOnesValue(); @@ -155,10 +155,10 @@ static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { if (!ICmpInst::isSigned(Pred)) return false; - if (C == 0) + if (C.isNullValue()) return ICmpInst::isRelational(Pred); - if (C == 1) { + if (C.isOneValue()) { if (Pred == ICmpInst::ICMP_SLT) { Pred = ICmpInst::ICMP_SLE; return true; @@ -1193,7 +1193,7 @@ Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, }; // Don't bother doing any work for cases which InstSimplify handles. - if (AP2 == 0) + if (AP2.isNullValue()) return nullptr; bool IsAShr = isa(I.getOperand(0)); @@ -1252,7 +1252,7 @@ Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, }; // Don't bother doing any work for cases which InstSimplify handles. - if (AP2 == 0) + if (AP2.isNullValue()) return nullptr; unsigned AP2TrailingZeros = AP2.countTrailingZeros(); @@ -1399,7 +1399,7 @@ Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { } // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) - if (*C == 0 && Pred == ICmpInst::ICMP_SGT) { + if (C->isNullValue() && Pred == ICmpInst::ICMP_SGT) { SelectPatternResult SPR = matchSelectPattern(X, A, B); if (SPR.Flavor == SPF_SMIN) { if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) @@ -1465,7 +1465,7 @@ Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, const APInt *C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); Value *X = Trunc->getOperand(0); - if (*C == 1 && C->getBitWidth() > 1) { + if (C->isOneValue() && C->getBitWidth() > 1) { // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 Value *V = nullptr; if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) @@ -1505,7 +1505,7 @@ Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, // If this is a comparison that tests the signbit (X < 0) or (x > -1), // fold the xor. ICmpInst::Predicate Pred = Cmp.getPredicate(); - if ((Pred == ICmpInst::ICMP_SLT && *C == 0) || + if ((Pred == ICmpInst::ICMP_SLT && C->isNullValue()) || (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) { // If the sign bit of the XorCst is not set, there is no change to @@ -1623,7 +1623,7 @@ Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is // preferable because it allows the C2 << Y expression to be hoisted out of a // loop if Y is invariant and X is not. - if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() && + if (Shift->hasOneUse() && C1->isNullValue() && Cmp.isEquality() && !Shift->isArithmeticShift() && !isa(Shift->getOperand(0))) { // Compute C2 << Y. Value *NewShift = @@ -1681,7 +1681,8 @@ Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, // (icmp pred (and A, (or (shl 1, B), 1), 0)) // // iff pred isn't signed - if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) { + if (!Cmp.isSigned() && C1->isNullValue() && + match(And->getOperand(1), m_One())) { Constant *One = cast(And->getOperand(1)); Value *Or = And->getOperand(0); Value *A, *B, *LShr; @@ -1764,7 +1765,7 @@ Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, // (X & C2) != 0 -> (trunc X) < 0 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. const APInt *C2; - if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) { + if (And->hasOneUse() && C->isNullValue() && match(Y, m_APInt(C2))) { int32_t ExactLogBase2 = C2->exactLogBase2(); if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); @@ -1784,7 +1785,7 @@ Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, const APInt *C) { ICmpInst::Predicate Pred = Cmp.getPredicate(); - if (*C == 1) { + if (C->isOneValue()) { // icmp slt signum(V) 1 --> icmp slt V, 1 Value *V = nullptr; if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) @@ -1801,7 +1802,7 @@ Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1)); } - if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse()) + if (!Cmp.isEquality() || !C->isNullValue() || !Or->hasOneUse()) return nullptr; Value *P, *Q; @@ -2036,7 +2037,8 @@ Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 Value *X = Shr->getOperand(0); CmpInst::Predicate Pred = Cmp.getPredicate(); - if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0) + if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && + C->isNullValue()) return new ICmpInst(Pred, X, Cmp.getOperand(1)); const APInt *ShiftVal; @@ -2178,7 +2180,8 @@ Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, // INT_MIN will also fail if the divisor is 1. Although folds of all these // division-by-constant cases should be present, we can not assert that they // have happened before we reach this icmp instruction. - if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue())) + if (C2->isNullValue() || C2->isOneValue() || + (DivIsSigned && C2->isAllOnesValue())) return nullptr; // TODO: We could do all of the computations below using APInt. @@ -2224,7 +2227,7 @@ Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); } } else if (C2->isStrictlyPositive()) { // Divisor is > 0. - if (*C == 0) { // (X / pos) op 0 + if (C->isNullValue()) { // (X / pos) op 0 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); HiBound = RangeSize; @@ -2245,7 +2248,7 @@ Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, } else if (C2->isNegative()) { // Divisor is < 0. if (Div->isExact()) RangeSize = ConstantExpr::getNeg(RangeSize); - if (*C == 0) { // (X / neg) op 0 + if (C->isNullValue()) { // (X / neg) op 0 // e.g. X/-5 op 0 --> [-4, 5) LoBound = AddOne(RangeSize); HiBound = ConstantExpr::getNeg(RangeSize); @@ -2337,15 +2340,15 @@ Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) - if (Pred == ICmpInst::ICMP_SGT && *C == 0) + if (Pred == ICmpInst::ICMP_SGT && C->isNullValue()) return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) - if (Pred == ICmpInst::ICMP_SLT && *C == 0) + if (Pred == ICmpInst::ICMP_SLT && C->isNullValue()) return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) - if (Pred == ICmpInst::ICMP_SLT && *C == 1) + if (Pred == ICmpInst::ICMP_SLT && C->isOneValue()) return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); } @@ -2520,7 +2523,7 @@ Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, switch (BO->getOpcode()) { case Instruction::SRem: // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. - if (*C == 0 && BO->hasOneUse()) { + if (C->isNullValue() && BO->hasOneUse()) { const APInt *BOC; if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName()); @@ -2537,7 +2540,7 @@ Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, Constant *SubC = ConstantExpr::getSub(RHS, cast(BOp1)); return new ICmpInst(Pred, BOp0, SubC); } - } else if (*C == 0) { + } else if (C->isNullValue()) { // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. if (Value *NegVal = dyn_castNegVal(BOp1)) @@ -2558,7 +2561,7 @@ Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, // For the xor case, we can xor two constants together, eliminating // the explicit xor. return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); - } else if (*C == 0) { + } else if (C->isNullValue()) { // Replace ((xor A, B) != 0) with (A != B) return new ICmpInst(Pred, BOp0, BOp1); } @@ -2571,7 +2574,7 @@ Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, // Replace ((sub BOC, B) != C) with (B != BOC-C). Constant *SubC = ConstantExpr::getSub(cast(BOp0), RHS); return new ICmpInst(Pred, BOp1, SubC); - } else if (*C == 0) { + } else if (C->isNullValue()) { // Replace ((sub A, B) != 0) with (A != B). return new ICmpInst(Pred, BOp0, BOp1); } @@ -2609,7 +2612,7 @@ Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, } // ((X & ~7) == 0) --> X < 8 - if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) { + if (C->isNullValue() && (~(*BOC) + 1).isPowerOf2()) { Constant *NegBOC = ConstantExpr::getNeg(cast(BOp1)); auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; return new ICmpInst(NewPred, BOp0, NegBOC); @@ -2618,9 +2621,9 @@ Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, break; } case Instruction::Mul: - if (*C == 0 && BO->hasNoSignedWrap()) { + if (C->isNullValue() && BO->hasNoSignedWrap()) { const APInt *BOC; - if (match(BOp1, m_APInt(BOC)) && *BOC != 0) { + if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { // The trivial case (mul X, 0) is handled by InstSimplify. // General case : (mul X, C) != 0 iff X != 0 // (mul X, C) == 0 iff X == 0 @@ -2629,7 +2632,7 @@ Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, } break; case Instruction::UDiv: - if (*C == 0) { + if (C->isNullValue()) { // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; return new ICmpInst(NewPred, BOp1, BOp0); @@ -2668,7 +2671,7 @@ Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, case Intrinsic::ctpop: { // popcount(A) == 0 -> A == 0 and likewise for != // popcount(A) == bitwidth(A) -> A == -1 and likewise for != - bool IsZero = *C == 0; + bool IsZero = C->isNullValue(); if (IsZero || *C == C->getBitWidth()) { Worklist.Add(II); Cmp.setOperand(0, II->getArgOperand(0)); @@ -3057,7 +3060,8 @@ Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { break; const APInt *C; - if (match(BO0->getOperand(1), m_APInt(C)) && *C != 0 && *C != 1) { + if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && + !C->isOneValue()) { // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) // Mask = -1 >> count-trailing-zeros(C). if (unsigned TZs = C->countTrailingZeros()) { @@ -4093,7 +4097,7 @@ Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. const APInt *CI; - if (Op0KnownZeroInverted == 1 && + if (Op0KnownZeroInverted.isOneValue() && match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { // ((8 >>u X) & 1) == 0 -> X != 3 // ((8 >>u X) & 1) != 0 -> X == 3 diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index 4d408359eee..2fcfe464bbd 100644 --- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -930,7 +930,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { } } - if (*C2 != 0) // avoid X udiv 0 + if (!C2->isNullValue()) // avoid X udiv 0 if (Instruction *FoldedDiv = foldOpWithConstantIntoOperand(I)) return FoldedDiv; } diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp index 7afb8814fe5..229d59a15c2 100644 --- a/lib/Transforms/InstCombine/InstCombineSelect.cpp +++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp @@ -1478,9 +1478,9 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { KnownBits Known(1); computeKnownBits(CondVal, Known, 0, &SI); - if (Known.One == 1) + if (Known.One.isOneValue()) return replaceInstUsesWith(SI, TrueVal); - if (Known.Zero == 1) + if (Known.Zero.isOneValue()) return replaceInstUsesWith(SI, FalseVal); } diff --git a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp index 5df55f01b83..03841164b58 100644 --- a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp +++ b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp @@ -121,7 +121,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, } Known.resetAll(); - if (DemandedMask == 0) // Not demanding any bits from V. + if (DemandedMask.isNullValue()) // Not demanding any bits from V. return UndefValue::get(VTy); if (Depth == 6) // Limit search depth. @@ -488,7 +488,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, // always convert this into a logical shr, even if the shift amount is // variable. The low bit of the shift cannot be an input sign bit unless // the shift amount is >= the size of the datatype, which is undefined. - if (DemandedMask == 1) { + if (DemandedMask.isOneValue()) { // Perform the logical shift right. Instruction *NewVal = BinaryOperator::CreateLShr( I->getOperand(0), I->getOperand(1), I->getName()); @@ -656,7 +656,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, // If we don't need any of low bits then return zero, // we know that DemandedMask is non-zero already. APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); - if (DemandedElts == 0) + if (DemandedElts.isNullValue()) return ConstantInt::getNullValue(VTy); // We know that the upper bits are set to zero. @@ -908,7 +908,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, return nullptr; } - if (DemandedElts == 0) { // If nothing is demanded, provide undef. + if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. UndefElts = EltMask; return UndefValue::get(V->getType()); }