mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-29 22:50:47 +00:00
Converted MaximumSpanningTree algorithm to a generic template, this could go
into llvm/ADT. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81001 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
859fff476d
commit
ed1ac4ae8e
@ -1,7 +1,6 @@
|
||||
add_llvm_library(LLVMInstrumentation
|
||||
BlockProfiling.cpp
|
||||
EdgeProfiling.cpp
|
||||
MaximumSpanningTree.cpp
|
||||
OptimalEdgeProfiling.cpp
|
||||
ProfilingUtils.cpp
|
||||
RSProfiling.cpp
|
||||
|
@ -1,119 +0,0 @@
|
||||
//===- MaximumSpanningTree.cpp - LLVM Pass to estimate profile info -------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This module privides means for calculating a maximum spanning tree for the
|
||||
// CFG of a function according to a given profile. The tree does not contain
|
||||
// leaf edges, since they are needed for optimal edge profiling.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#define DEBUG_TYPE "maximum-spanning-tree"
|
||||
#include "MaximumSpanningTree.h"
|
||||
#include "llvm/ADT/EquivalenceClasses.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/Format.h"
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
// compare two weighted edges
|
||||
struct VISIBILITY_HIDDEN EdgeWeightCompare {
|
||||
bool operator()(const ProfileInfo::EdgeWeight X,
|
||||
const ProfileInfo::EdgeWeight Y) const {
|
||||
if (X.second > Y.second) return true;
|
||||
if (X.second < Y.second) return false;
|
||||
|
||||
// It would be enough to just compare the weights of the edges and be
|
||||
// done. With edges of the same weight this may lead to a different MST
|
||||
// each time the MST is created. To have more stable sorting (and thus
|
||||
// more stable MSTs) furhter sort the edges.
|
||||
if (X.first.first != 0 && Y.first.first == 0) return true;
|
||||
if (X.first.first == 0 && Y.first.first != 0) return false;
|
||||
if (X.first.first == 0 && Y.first.first == 0) return false;
|
||||
|
||||
if (X.first.first->size() > Y.first.first->size()) return true;
|
||||
if (X.first.first->size() < Y.first.first->size()) return false;
|
||||
|
||||
if (X.first.second != 0 && Y.first.second == 0) return true;
|
||||
if (X.first.second == 0 && Y.first.second != 0) return false;
|
||||
if (X.first.second == 0 && Y.first.second == 0) return false;
|
||||
|
||||
if (X.first.second->size() > Y.first.second->size()) return true;
|
||||
if (X.first.second->size() < Y.first.second->size()) return false;
|
||||
|
||||
return false;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
static void inline printMSTEdge(ProfileInfo::EdgeWeight E,
|
||||
const char *M) {
|
||||
DEBUG(errs() << "--Edge " << E.first
|
||||
<<" (Weight "<< format("%g",E.second) << ") "
|
||||
<< (M) << "\n");
|
||||
}
|
||||
|
||||
// MaximumSpanningTree() - Takes a function and returns a spanning tree
|
||||
// according to the currently active profiling information, the leaf edges are
|
||||
// NOT in the MST. MaximumSpanningTree uses the algorithm of Kruskal.
|
||||
MaximumSpanningTree::MaximumSpanningTree(std::vector<ProfileInfo::EdgeWeight>
|
||||
&EdgeVector) {
|
||||
|
||||
std::sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare());
|
||||
|
||||
// Create spanning tree, Forest contains a special data structure
|
||||
// that makes checking if two nodes are already in a common (sub-)tree
|
||||
// fast and cheap.
|
||||
EquivalenceClasses<const BasicBlock*> Forest;
|
||||
for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(),
|
||||
bbe = EdgeVector.end(); bbi != bbe; ++bbi) {
|
||||
Forest.insert(bbi->first.first);
|
||||
Forest.insert(bbi->first.second);
|
||||
}
|
||||
Forest.insert(0);
|
||||
|
||||
// Iterate over the sorted edges, biggest first.
|
||||
for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(),
|
||||
bbe = EdgeVector.end(); bbi != bbe; ++bbi) {
|
||||
ProfileInfo::Edge e = (*bbi).first;
|
||||
|
||||
if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
|
||||
Forest.unionSets(e.first, e.second);
|
||||
// So we know now that the edge is not already in a subtree (and not
|
||||
// (0,entry)), so we push the edge to the MST if it has some successors.
|
||||
MST.push_back(e);
|
||||
printMSTEdge(*bbi,"in MST");
|
||||
} else {
|
||||
// This edge is either (0,entry) or (BB,0) or would create a circle in a
|
||||
// subtree.
|
||||
printMSTEdge(*bbi,"*not* in MST");
|
||||
}
|
||||
}
|
||||
|
||||
// Sort the MST edges.
|
||||
std::stable_sort(MST.begin(),MST.end());
|
||||
}
|
||||
|
||||
MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::begin() {
|
||||
return MST.begin();
|
||||
}
|
||||
|
||||
MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::end() {
|
||||
return MST.end();
|
||||
}
|
||||
|
||||
void MaximumSpanningTree::dump() {
|
||||
errs()<<"{";
|
||||
for ( MaxSpanTree::iterator ei = MST.begin(), ee = MST.end();
|
||||
ei!=ee; ++ei ) {
|
||||
errs()<<"("<<((*ei).first?(*ei).first->getNameStr():"0")<<",";
|
||||
errs()<<(*ei).second->getNameStr()<<")";
|
||||
}
|
||||
errs()<<"}\n";
|
||||
}
|
@ -7,43 +7,87 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This module privides means for calculating a maximum spanning tree for the
|
||||
// CFG of a function according to a given profile.
|
||||
// This module privides means for calculating a maximum spanning tree for a
|
||||
// given set of weighted edges. The type parameter T is the type of a node.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
|
||||
#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
|
||||
|
||||
#include "llvm/Analysis/ProfileInfo.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/ADT/EquivalenceClasses.h"
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
namespace llvm {
|
||||
class Function;
|
||||
|
||||
/// MaximumSpanningTree - A MST implementation.
|
||||
/// The type parameter T determines the type of the nodes of the graph.
|
||||
template <typename T>
|
||||
class MaximumSpanningTree {
|
||||
public:
|
||||
typedef std::vector<ProfileInfo::Edge> MaxSpanTree;
|
||||
|
||||
// A comparing class for comparing weighted edges.
|
||||
template <typename CT>
|
||||
struct EdgeWeightCompare {
|
||||
bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X,
|
||||
typename MaximumSpanningTree<CT>::EdgeWeight Y) const {
|
||||
if (X.second > Y.second) return true;
|
||||
if (X.second < Y.second) return false;
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
typedef std::pair<const T*, const T*> Edge;
|
||||
typedef std::pair<Edge, double> EdgeWeight;
|
||||
typedef std::vector<EdgeWeight> EdgeWeights;
|
||||
protected:
|
||||
typedef std::vector<Edge> MaxSpanTree;
|
||||
|
||||
MaxSpanTree MST;
|
||||
|
||||
public:
|
||||
static char ID; // Class identification, replacement for typeinfo
|
||||
|
||||
// MaxSpanTree() - Calculates a MST for a function according to a profile.
|
||||
// If inverted is true, all the edges *not* in the MST are returned. As a
|
||||
// special also all leaf edges of the MST are not included, this makes it
|
||||
// easier for the OptimalEdgeProfileInstrumentation to use this MST to do
|
||||
// an optimal profiling.
|
||||
MaximumSpanningTree(std::vector<ProfileInfo::EdgeWeight>&);
|
||||
virtual ~MaximumSpanningTree() {}
|
||||
/// MaximumSpanningTree() - Takes a vector of weighted edges and returns a
|
||||
/// spanning tree.
|
||||
MaximumSpanningTree(EdgeWeights &EdgeVector) {
|
||||
|
||||
virtual MaxSpanTree::iterator begin();
|
||||
virtual MaxSpanTree::iterator end();
|
||||
std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>());
|
||||
|
||||
virtual void dump();
|
||||
// Create spanning tree, Forest contains a special data structure
|
||||
// that makes checking if two nodes are already in a common (sub-)tree
|
||||
// fast and cheap.
|
||||
EquivalenceClasses<const T*> Forest;
|
||||
for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
|
||||
EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
|
||||
Edge e = (*EWi).first;
|
||||
|
||||
Forest.insert(e.first);
|
||||
Forest.insert(e.second);
|
||||
}
|
||||
|
||||
// Iterate over the sorted edges, biggest first.
|
||||
for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
|
||||
EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
|
||||
Edge e = (*EWi).first;
|
||||
|
||||
if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
|
||||
Forest.unionSets(e.first, e.second);
|
||||
// So we know now that the edge is not already in a subtree, so we push
|
||||
// the edge to the MST.
|
||||
MST.push_back(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
typename MaxSpanTree::iterator begin() {
|
||||
return MST.begin();
|
||||
}
|
||||
|
||||
typename MaxSpanTree::iterator end() {
|
||||
return MST.end();
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
@ -17,6 +17,7 @@
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Analysis/Passes.h"
|
||||
#include "llvm/Analysis/ProfileInfo.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
@ -131,7 +132,8 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
|
||||
ProfileInfo::EdgeWeights ECs =
|
||||
getAnalysisID<ProfileInfo>(ProfileEstimatorPassID, *F).getEdgeWeights(F);
|
||||
std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
|
||||
MaximumSpanningTree MST = MaximumSpanningTree(EdgeVector);
|
||||
MaximumSpanningTree<BasicBlock> MST (EdgeVector);
|
||||
std::stable_sort(MST.begin(),MST.end());
|
||||
|
||||
// Check if (0,entry) not in the MST. If not, instrument edge
|
||||
// (IncrementCounterInBlock()) and set the counter initially to zero, if
|
||||
|
Loading…
Reference in New Issue
Block a user