rip out the 'heinous' x86 MCCodeEmitter implementation.

We still have the templated X86 JIT emitter, *and* the
almost-copy in X86InstrInfo for getting instruction sizes.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96059 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2010-02-13 00:49:29 +00:00
parent a599de2410
commit f068304b1f
5 changed files with 4 additions and 340 deletions

View File

@ -50,8 +50,6 @@ FunctionPass *createX87FPRegKillInserterPass();
FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM,
JITCodeEmitter &JCE);
MCCodeEmitter *createHeinousX86MCCodeEmitter(const Target &, TargetMachine &TM,
MCContext &Ctx);
MCCodeEmitter *createX86_32MCCodeEmitter(const Target &, TargetMachine &TM,
MCContext &Ctx);
MCCodeEmitter *createX86_64MCCodeEmitter(const Target &, TargetMachine &TM,

View File

@ -871,336 +871,3 @@ void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI,
MCE.processDebugLoc(MI.getDebugLoc(), false);
}
// Adapt the Emitter / CodeEmitter interfaces to MCCodeEmitter.
//
// FIXME: This is a total hack designed to allow work on llvm-mc to proceed
// without being blocked on various cleanups needed to support a clean interface
// to instruction encoding.
//
// Look away!
#include "llvm/DerivedTypes.h"
namespace {
class MCSingleInstructionCodeEmitter : public MachineCodeEmitter {
uint8_t Data[256];
const MCInst *CurrentInst;
SmallVectorImpl<MCFixup> *FixupList;
public:
MCSingleInstructionCodeEmitter() { reset(0, 0); }
void reset(const MCInst *Inst, SmallVectorImpl<MCFixup> *Fixups) {
CurrentInst = Inst;
FixupList = Fixups;
BufferBegin = Data;
BufferEnd = array_endof(Data);
CurBufferPtr = Data;
}
StringRef str() {
return StringRef(reinterpret_cast<char*>(BufferBegin),
CurBufferPtr - BufferBegin);
}
virtual void startFunction(MachineFunction &F) {}
virtual bool finishFunction(MachineFunction &F) { return false; }
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {}
virtual bool earlyResolveAddresses() const { return false; }
virtual void addRelocation(const MachineRelocation &MR) {
unsigned Offset = 0, OpIndex = 0, Kind = MR.getRelocationType();
// This form is only used in one case, for branches.
if (MR.isBasicBlock()) {
Offset = unsigned(MR.getMachineCodeOffset());
OpIndex = 0;
} else {
assert(MR.isJumpTableIndex() && "Unexpected relocation!");
Offset = unsigned(MR.getMachineCodeOffset());
// The operand index is encoded as the first byte of the fake operand.
OpIndex = MR.getJumpTableIndex();
}
MCOperand Op = CurrentInst->getOperand(OpIndex);
assert(Op.isExpr() && "FIXME: Not yet implemented!");
FixupList->push_back(MCFixup::Create(Offset, Op.getExpr(),
MCFixupKind(FirstTargetFixupKind + Kind)));
}
virtual void setModuleInfo(MachineModuleInfo* Info) {}
// Interface functions which should never get called in our usage.
virtual void emitLabel(uint64_t LabelID) {
assert(0 && "Unexpected code emitter call!");
}
virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const {
assert(0 && "Unexpected code emitter call!");
return 0;
}
virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const {
assert(0 && "Unexpected code emitter call!");
return 0;
}
virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
assert(0 && "Unexpected code emitter call!");
return 0;
}
virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
assert(0 && "Unexpected code emitter call!");
return 0;
}
};
class X86MCCodeEmitter : public MCCodeEmitter {
X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
private:
X86TargetMachine &TM;
llvm::Function *DummyF;
TargetData *DummyTD;
mutable llvm::MachineFunction *DummyMF;
llvm::MachineBasicBlock *DummyMBB;
MCSingleInstructionCodeEmitter *InstrEmitter;
Emitter<MachineCodeEmitter> *Emit;
public:
X86MCCodeEmitter(X86TargetMachine &_TM) : TM(_TM) {
// Verily, thou shouldst avert thine eyes.
const llvm::FunctionType *FTy =
FunctionType::get(llvm::Type::getVoidTy(getGlobalContext()), false);
DummyF = Function::Create(FTy, GlobalValue::InternalLinkage);
DummyTD = new TargetData("");
DummyMF = new MachineFunction(DummyF, TM, 0);
DummyMBB = DummyMF->CreateMachineBasicBlock();
InstrEmitter = new MCSingleInstructionCodeEmitter();
Emit = new Emitter<MachineCodeEmitter>(TM, *InstrEmitter,
*TM.getInstrInfo(),
*DummyTD, false);
}
~X86MCCodeEmitter() {
delete Emit;
delete InstrEmitter;
delete DummyMF;
delete DummyF;
}
unsigned getNumFixupKinds() const {
return 5;
}
MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
static MCFixupKindInfo Infos[] = {
{ "reloc_pcrel_word", 0, 4 * 8 },
{ "reloc_picrel_word", 0, 4 * 8 },
{ "reloc_absolute_word", 0, 4 * 8 },
{ "reloc_absolute_word_sext", 0, 4 * 8 },
{ "reloc_absolute_dword", 0, 8 * 8 }
};
assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
bool AddRegToInstr(const MCInst &MI, MachineInstr *Instr,
unsigned Start) const {
if (Start + 1 > MI.getNumOperands())
return false;
const MCOperand &Op = MI.getOperand(Start);
if (!Op.isReg()) return false;
Instr->addOperand(MachineOperand::CreateReg(Op.getReg(), false));
return true;
}
bool AddImmToInstr(const MCInst &MI, MachineInstr *Instr,
unsigned Start) const {
if (Start + 1 > MI.getNumOperands())
return false;
const MCOperand &Op = MI.getOperand(Start);
if (Op.isImm()) {
Instr->addOperand(MachineOperand::CreateImm(Op.getImm()));
return true;
}
if (!Op.isExpr())
return false;
const MCExpr *Expr = Op.getExpr();
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) {
Instr->addOperand(MachineOperand::CreateImm(CE->getValue()));
return true;
}
// Fake this as an external symbol to the code emitter to add a relcoation
// entry we will recognize.
Instr->addOperand(MachineOperand::CreateJTI(Start, 0));
return true;
}
bool AddLMemToInstr(const MCInst &MI, MachineInstr *Instr,
unsigned Start) const {
return (AddRegToInstr(MI, Instr, Start + 0) &&
AddImmToInstr(MI, Instr, Start + 1) &&
AddRegToInstr(MI, Instr, Start + 2) &&
AddImmToInstr(MI, Instr, Start + 3));
}
bool AddMemToInstr(const MCInst &MI, MachineInstr *Instr,
unsigned Start) const {
return (AddRegToInstr(MI, Instr, Start + 0) &&
AddImmToInstr(MI, Instr, Start + 1) &&
AddRegToInstr(MI, Instr, Start + 2) &&
AddImmToInstr(MI, Instr, Start + 3) &&
AddRegToInstr(MI, Instr, Start + 4));
}
void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const {
// Don't look yet!
// Convert the MCInst to a MachineInstr so we can (ab)use the regular
// emitter.
const X86InstrInfo &II = *TM.getInstrInfo();
const TargetInstrDesc &Desc = II.get(MI.getOpcode());
MachineInstr *Instr = DummyMF->CreateMachineInstr(Desc, DebugLoc());
DummyMBB->push_back(Instr);
unsigned Opcode = MI.getOpcode();
unsigned NumOps = MI.getNumOperands();
unsigned CurOp = 0;
bool AddTied = false;
if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
AddTied = true;
else if (NumOps > 2 &&
Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
// Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
--NumOps;
bool OK = true;
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::MRMDestReg:
case X86II::MRMSrcReg:
// Matching doesn't fill this in completely, we have to choose operand 0
// for a tied register.
OK &= AddRegToInstr(MI, Instr, CurOp++);
if (AddTied)
OK &= AddRegToInstr(MI, Instr, CurOp++ - 1);
OK &= AddRegToInstr(MI, Instr, CurOp++);
if (CurOp < NumOps)
OK &= AddImmToInstr(MI, Instr, CurOp);
break;
case X86II::RawFrm:
if (CurOp < NumOps) {
// Hack to make branches work.
if (!(Desc.TSFlags & X86II::ImmMask) &&
MI.getOperand(0).isExpr() &&
isa<MCSymbolRefExpr>(MI.getOperand(0).getExpr()))
Instr->addOperand(MachineOperand::CreateMBB(DummyMBB));
else
OK &= AddImmToInstr(MI, Instr, CurOp);
}
break;
case X86II::AddRegFrm:
// Matching doesn't fill this in completely, we have to choose operand 0
// for a tied register.
OK &= AddRegToInstr(MI, Instr, CurOp++);
if (AddTied)
OK &= AddRegToInstr(MI, Instr, CurOp++ - 1);
if (CurOp < NumOps)
OK &= AddImmToInstr(MI, Instr, CurOp);
break;
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r:
// Matching doesn't fill this in completely, we have to choose operand 0
// for a tied register.
OK &= AddRegToInstr(MI, Instr, CurOp++);
if (AddTied)
OK &= AddRegToInstr(MI, Instr, CurOp++ - 1);
if (CurOp < NumOps)
OK &= AddImmToInstr(MI, Instr, CurOp);
break;
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m:
OK &= AddMemToInstr(MI, Instr, CurOp); CurOp += 5;
if (CurOp < NumOps)
OK &= AddImmToInstr(MI, Instr, CurOp);
break;
case X86II::MRMSrcMem:
// Matching doesn't fill this in completely, we have to choose operand 0
// for a tied register.
OK &= AddRegToInstr(MI, Instr, CurOp++);
if (AddTied)
OK &= AddRegToInstr(MI, Instr, CurOp++ - 1);
if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
Opcode == X86::LEA16r || Opcode == X86::LEA32r)
OK &= AddLMemToInstr(MI, Instr, CurOp);
else
OK &= AddMemToInstr(MI, Instr, CurOp);
break;
case X86II::MRMDestMem:
OK &= AddMemToInstr(MI, Instr, CurOp); CurOp += 5;
OK &= AddRegToInstr(MI, Instr, CurOp);
break;
default:
case X86II::MRMInitReg:
case X86II::Pseudo:
OK = false;
break;
}
if (!OK) {
dbgs() << "couldn't convert inst '";
MI.dump();
dbgs() << "' to machine instr:\n";
Instr->dump();
}
InstrEmitter->reset(&MI, &Fixups);
if (OK)
Emit->emitInstruction(*Instr, &Desc);
OS << InstrEmitter->str();
Instr->eraseFromParent();
}
};
}
#include "llvm/Support/CommandLine.h"
static cl::opt<bool> EnableNewEncoder("enable-new-x86-encoder",
cl::ReallyHidden);
// Ok, now you can look.
MCCodeEmitter *llvm::createHeinousX86MCCodeEmitter(const Target &T,
TargetMachine &TM,
MCContext &Ctx) {
// FIXME: Remove the heinous one when the new one works.
if (EnableNewEncoder) {
if (TM.getTargetData()->getPointerSize() == 4)
return createX86_32MCCodeEmitter(T, TM, Ctx);
return createX86_64MCCodeEmitter(T, TM, Ctx);
}
return new X86MCCodeEmitter(static_cast<X86TargetMachine&>(TM));
}

View File

@ -48,11 +48,10 @@ extern "C" void LLVMInitializeX86Target() {
RegisterAsmInfoFn B(TheX86_64Target, createMCAsmInfo);
// Register the code emitter.
// FIXME: Remove the heinous one when the new one works.
TargetRegistry::RegisterCodeEmitter(TheX86_32Target,
createHeinousX86MCCodeEmitter);
createX86_32MCCodeEmitter);
TargetRegistry::RegisterCodeEmitter(TheX86_64Target,
createHeinousX86MCCodeEmitter);
createX86_64MCCodeEmitter);
}

View File

@ -1,4 +1,4 @@
// RUN: llvm-mc -triple i386-unknown-unknown --show-encoding --enable-new-x86-encoder %s | FileCheck %s
// RUN: llvm-mc -triple i386-unknown-unknown --show-encoding %s | FileCheck %s
lfence
// CHECK: lfence

View File

@ -1,4 +1,4 @@
// RUN: llvm-mc -triple x86_64-unknown-unknown --show-encoding --enable-new-x86-encoder %s | FileCheck %s
// RUN: llvm-mc -triple x86_64-unknown-unknown --show-encoding %s | FileCheck %s
movl foo(%rip), %eax
// CHECK: movl foo(%rip), %eax