mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-28 14:10:41 +00:00
Make use of vector load and store operations to implement memcpy, memmove, and memset. Currently only X86 target is taking advantage of these.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51140 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
38503d4046
commit
f0df03134e
@ -210,6 +210,13 @@ public:
|
||||
return Objects[ObjectIdx+NumFixedObjects].Alignment;
|
||||
}
|
||||
|
||||
/// setObjectAlignment - Change the alignment of the spcified stack object...
|
||||
void setObjectAlignment(int ObjectIdx, unsigned Align) {
|
||||
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
|
||||
"Invalid Object Idx!");
|
||||
Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
|
||||
}
|
||||
|
||||
/// getObjectOffset - Return the assigned stack offset of the specified object
|
||||
/// from the incoming stack pointer.
|
||||
///
|
||||
|
@ -510,6 +510,15 @@ public:
|
||||
bool allowsUnalignedMemoryAccesses() const {
|
||||
return allowUnalignedMemoryAccesses;
|
||||
}
|
||||
|
||||
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
||||
/// store operations as result of memset, memcpy, and memmove lowering.
|
||||
/// It returns MVT::iAny if SelectionDAG should be responsible for
|
||||
/// determining it.
|
||||
virtual MVT::ValueType getOptimalMemOpType(uint64_t Size, unsigned Align,
|
||||
bool isSrcConst, bool isSrcStr) const {
|
||||
return MVT::iAny;
|
||||
}
|
||||
|
||||
/// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
|
||||
/// to implement llvm.setjmp.
|
||||
|
@ -2505,41 +2505,42 @@ SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
|
||||
/// operand.
|
||||
static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
|
||||
SelectionDAG &DAG) {
|
||||
MVT::ValueType CurVT = VT;
|
||||
unsigned NumBits = MVT::isVector(VT) ?
|
||||
MVT::getSizeInBits(MVT::getVectorElementType(VT)) : MVT::getSizeInBits(VT);
|
||||
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
|
||||
uint64_t Val = C->getValue() & 255;
|
||||
APInt Val = APInt(NumBits, C->getValue() & 255);
|
||||
unsigned Shift = 8;
|
||||
while (CurVT != MVT::i8) {
|
||||
for (unsigned i = NumBits; i > 8; i >>= 1) {
|
||||
Val = (Val << Shift) | Val;
|
||||
Shift <<= 1;
|
||||
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
|
||||
}
|
||||
return DAG.getConstant(Val, VT);
|
||||
} else {
|
||||
Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
|
||||
unsigned Shift = 8;
|
||||
while (CurVT != MVT::i8) {
|
||||
Value =
|
||||
DAG.getNode(ISD::OR, VT,
|
||||
DAG.getNode(ISD::SHL, VT, Value,
|
||||
DAG.getConstant(Shift, MVT::i8)), Value);
|
||||
Shift <<= 1;
|
||||
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
|
||||
}
|
||||
|
||||
return Value;
|
||||
if (MVT::isInteger(VT))
|
||||
return DAG.getConstant(Val, VT);
|
||||
return DAG.getConstantFP(APFloat(Val), VT);
|
||||
}
|
||||
|
||||
Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
|
||||
unsigned Shift = 8;
|
||||
for (unsigned i = NumBits; i > 8; i >>= 1) {
|
||||
Value = DAG.getNode(ISD::OR, VT,
|
||||
DAG.getNode(ISD::SHL, VT, Value,
|
||||
DAG.getConstant(Shift, MVT::i8)), Value);
|
||||
Shift <<= 1;
|
||||
}
|
||||
|
||||
return Value;
|
||||
}
|
||||
|
||||
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
|
||||
/// used when a memcpy is turned into a memset when the source is a constant
|
||||
/// string ptr.
|
||||
static SDOperand getMemsetStringVal(MVT::ValueType VT,
|
||||
SelectionDAG &DAG,
|
||||
static SDOperand getMemsetStringVal(MVT::ValueType VT, SelectionDAG &DAG,
|
||||
const TargetLowering &TLI,
|
||||
std::string &Str, unsigned Offset) {
|
||||
assert(!MVT::isVector(VT) && "Can't handle vector type here!");
|
||||
unsigned NumBits = MVT::getSizeInBits(VT);
|
||||
unsigned MSB = NumBits / 8;
|
||||
uint64_t Val = 0;
|
||||
unsigned MSB = MVT::getSizeInBits(VT) / 8;
|
||||
if (TLI.isLittleEndian())
|
||||
Offset = Offset + MSB - 1;
|
||||
for (unsigned i = 0; i != MSB; ++i) {
|
||||
@ -2550,56 +2551,119 @@ static SDOperand getMemsetStringVal(MVT::ValueType VT,
|
||||
}
|
||||
|
||||
/// getMemBasePlusOffset - Returns base and offset node for the
|
||||
///
|
||||
static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
|
||||
SelectionDAG &DAG) {
|
||||
MVT::ValueType VT = Base.getValueType();
|
||||
return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
|
||||
}
|
||||
|
||||
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
|
||||
/// to replace the memset / memcpy is below the threshold. It also returns the
|
||||
/// types of the sequence of memory ops to perform memset / memcpy.
|
||||
static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
|
||||
unsigned Limit, uint64_t Size,
|
||||
unsigned Align,
|
||||
const TargetLowering &TLI) {
|
||||
MVT::ValueType VT;
|
||||
/// isMemSrcFromString - Returns true if memcpy source is a string constant.
|
||||
///
|
||||
static bool isMemSrcFromString(SDOperand Src, std::string &Str,
|
||||
uint64_t &SrcOff) {
|
||||
unsigned SrcDelta = 0;
|
||||
GlobalAddressSDNode *G = NULL;
|
||||
if (Src.getOpcode() == ISD::GlobalAddress)
|
||||
G = cast<GlobalAddressSDNode>(Src);
|
||||
else if (Src.getOpcode() == ISD::ADD &&
|
||||
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
|
||||
Src.getOperand(1).getOpcode() == ISD::Constant) {
|
||||
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
|
||||
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
|
||||
}
|
||||
if (!G)
|
||||
return false;
|
||||
|
||||
if (TLI.allowsUnalignedMemoryAccesses()) {
|
||||
VT = MVT::i64;
|
||||
} else {
|
||||
switch (Align & 7) {
|
||||
case 0:
|
||||
VT = MVT::i64;
|
||||
break;
|
||||
case 4:
|
||||
VT = MVT::i32;
|
||||
break;
|
||||
case 2:
|
||||
VT = MVT::i16;
|
||||
break;
|
||||
default:
|
||||
VT = MVT::i8;
|
||||
break;
|
||||
GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
|
||||
if (GV && GV->isConstant()) {
|
||||
Str = GV->getStringValue(false);
|
||||
if (!Str.empty()) {
|
||||
SrcOff += SrcDelta;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
MVT::ValueType LVT = MVT::i64;
|
||||
while (!TLI.isTypeLegal(LVT))
|
||||
LVT = (MVT::ValueType)((unsigned)LVT - 1);
|
||||
assert(MVT::isInteger(LVT));
|
||||
return false;
|
||||
}
|
||||
|
||||
if (VT > LVT)
|
||||
VT = LVT;
|
||||
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
|
||||
/// to replace the memset / memcpy is below the threshold. It also returns the
|
||||
/// types of the sequence of memory ops to perform memset / memcpy.
|
||||
static
|
||||
bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
|
||||
SDOperand Dst, SDOperand Src,
|
||||
unsigned Limit, uint64_t Size, unsigned &Align,
|
||||
SelectionDAG &DAG,
|
||||
const TargetLowering &TLI) {
|
||||
bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
|
||||
|
||||
std::string Str;
|
||||
uint64_t SrcOff = 0;
|
||||
bool isSrcStr = isMemSrcFromString(Src, Str, SrcOff);
|
||||
bool isSrcConst = isa<ConstantSDNode>(Src);
|
||||
MVT::ValueType VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
|
||||
if (VT != MVT::iAny) {
|
||||
unsigned NewAlign = (unsigned)
|
||||
TLI.getTargetData()->getABITypeAlignment(MVT::getTypeForValueType(VT));
|
||||
// If source is a string constant, this will require an unaligned load.
|
||||
if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
|
||||
if (Dst.getOpcode() != ISD::FrameIndex) {
|
||||
// Can't change destination alignment. It requires a unaligned store.
|
||||
if (AllowUnalign)
|
||||
VT = MVT::iAny;
|
||||
} else {
|
||||
int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
|
||||
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
||||
if (MFI->isFixedObjectIndex(FI)) {
|
||||
// Can't change destination alignment. It requires a unaligned store.
|
||||
if (AllowUnalign)
|
||||
VT = MVT::iAny;
|
||||
} else {
|
||||
// Give the stack frame object a larger alignment.
|
||||
MFI->setObjectAlignment(FI, NewAlign);
|
||||
Align = NewAlign;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (VT == MVT::iAny) {
|
||||
if (AllowUnalign) {
|
||||
VT = MVT::i64;
|
||||
} else {
|
||||
switch (Align & 7) {
|
||||
case 0: VT = MVT::i64; break;
|
||||
case 4: VT = MVT::i32; break;
|
||||
case 2: VT = MVT::i16; break;
|
||||
default: VT = MVT::i8; break;
|
||||
}
|
||||
}
|
||||
|
||||
MVT::ValueType LVT = MVT::i64;
|
||||
while (!TLI.isTypeLegal(LVT))
|
||||
LVT = (MVT::ValueType)((unsigned)LVT - 1);
|
||||
assert(MVT::isInteger(LVT));
|
||||
|
||||
if (VT > LVT)
|
||||
VT = LVT;
|
||||
}
|
||||
|
||||
unsigned NumMemOps = 0;
|
||||
while (Size != 0) {
|
||||
unsigned VTSize = MVT::getSizeInBits(VT) / 8;
|
||||
while (VTSize > Size) {
|
||||
VT = (MVT::ValueType)((unsigned)VT - 1);
|
||||
VTSize >>= 1;
|
||||
// For now, only use non-vector load / store's for the left-over pieces.
|
||||
if (MVT::isVector(VT)) {
|
||||
VT = MVT::i64;
|
||||
while (!TLI.isTypeLegal(VT))
|
||||
VT = (MVT::ValueType)((unsigned)VT - 1);
|
||||
VTSize = MVT::getSizeInBits(VT) / 8;
|
||||
} else {
|
||||
VT = (MVT::ValueType)((unsigned)VT - 1);
|
||||
VTSize >>= 1;
|
||||
}
|
||||
}
|
||||
assert(MVT::isInteger(VT));
|
||||
|
||||
if (++NumMemOps > Limit)
|
||||
return false;
|
||||
@ -2613,8 +2677,7 @@ static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
|
||||
static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
|
||||
SDOperand Chain, SDOperand Dst,
|
||||
SDOperand Src, uint64_t Size,
|
||||
unsigned Align,
|
||||
bool AlwaysInline,
|
||||
unsigned Align, bool AlwaysInline,
|
||||
const Value *DstSV, uint64_t DstSVOff,
|
||||
const Value *SrcSV, uint64_t SrcSVOff){
|
||||
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
||||
@ -2625,56 +2688,38 @@ static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
|
||||
uint64_t Limit = -1;
|
||||
if (!AlwaysInline)
|
||||
Limit = TLI.getMaxStoresPerMemcpy();
|
||||
if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
|
||||
unsigned DstAlign = Align; // Destination alignment can change.
|
||||
if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
|
||||
DAG, TLI))
|
||||
return SDOperand();
|
||||
|
||||
SmallVector<SDOperand, 8> OutChains;
|
||||
|
||||
unsigned NumMemOps = MemOps.size();
|
||||
unsigned SrcDelta = 0;
|
||||
GlobalAddressSDNode *G = NULL;
|
||||
std::string Str;
|
||||
bool CopyFromStr = false;
|
||||
uint64_t SrcOff = 0, DstOff = 0;
|
||||
bool CopyFromStr = isMemSrcFromString(Src, Str, SrcOff);
|
||||
|
||||
if (Src.getOpcode() == ISD::GlobalAddress)
|
||||
G = cast<GlobalAddressSDNode>(Src);
|
||||
else if (Src.getOpcode() == ISD::ADD &&
|
||||
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
|
||||
Src.getOperand(1).getOpcode() == ISD::Constant) {
|
||||
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
|
||||
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
|
||||
}
|
||||
if (G) {
|
||||
GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
|
||||
if (GV && GV->isConstant()) {
|
||||
Str = GV->getStringValue(false);
|
||||
if (!Str.empty()) {
|
||||
CopyFromStr = true;
|
||||
SrcOff += SrcDelta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SmallVector<SDOperand, 8> OutChains;
|
||||
unsigned NumMemOps = MemOps.size();
|
||||
for (unsigned i = 0; i < NumMemOps; i++) {
|
||||
MVT::ValueType VT = MemOps[i];
|
||||
unsigned VTSize = MVT::getSizeInBits(VT) / 8;
|
||||
SDOperand Value, Store;
|
||||
|
||||
if (CopyFromStr) {
|
||||
if (CopyFromStr && !MVT::isVector(VT)) {
|
||||
// It's unlikely a store of a vector immediate can be done in a single
|
||||
// instruction. It would require a load from a constantpool first.
|
||||
// FIXME: Handle cases where store of vector immediate is done in a
|
||||
// single instruction.
|
||||
Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
|
||||
Store =
|
||||
DAG.getStore(Chain, Value,
|
||||
getMemBasePlusOffset(Dst, DstOff, DAG),
|
||||
DstSV, DstSVOff + DstOff);
|
||||
Store = DAG.getStore(Chain, Value,
|
||||
getMemBasePlusOffset(Dst, DstOff, DAG),
|
||||
DstSV, DstSVOff + DstOff);
|
||||
} else {
|
||||
Value = DAG.getLoad(VT, Chain,
|
||||
getMemBasePlusOffset(Src, SrcOff, DAG),
|
||||
SrcSV, SrcSVOff + SrcOff, false, Align);
|
||||
Store =
|
||||
DAG.getStore(Chain, Value,
|
||||
getMemBasePlusOffset(Dst, DstOff, DAG),
|
||||
DstSV, DstSVOff + DstOff, false, Align);
|
||||
Store = DAG.getStore(Chain, Value,
|
||||
getMemBasePlusOffset(Dst, DstOff, DAG),
|
||||
DstSV, DstSVOff + DstOff, false, DstAlign);
|
||||
}
|
||||
OutChains.push_back(Store);
|
||||
SrcOff += VTSize;
|
||||
@ -2695,8 +2740,8 @@ static SDOperand getMemsetStores(SelectionDAG &DAG,
|
||||
// Expand memset to a series of load/store ops if the size operand
|
||||
// falls below a certain threshold.
|
||||
std::vector<MVT::ValueType> MemOps;
|
||||
if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
|
||||
Size, Align, TLI))
|
||||
if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
|
||||
Size, Align, DAG, TLI))
|
||||
return SDOperand();
|
||||
|
||||
SmallVector<SDOperand, 8> OutChains;
|
||||
|
@ -787,6 +787,23 @@ unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
|
||||
return Align;
|
||||
}
|
||||
|
||||
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
||||
/// store operations as result of memset, memcpy, and memmove lowering.
|
||||
/// It returns MVT::iAny if SelectionDAG should be responsible for
|
||||
/// determining it.
|
||||
MVT::ValueType
|
||||
X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
|
||||
bool isSrcConst, bool isSrcStr) const {
|
||||
if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
|
||||
return MVT::v4i32;
|
||||
if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
|
||||
return MVT::v4f32;
|
||||
if (Subtarget->is64Bit() && Size >= 8)
|
||||
return MVT::i64;
|
||||
return MVT::i32;
|
||||
}
|
||||
|
||||
|
||||
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
|
||||
/// jumptable.
|
||||
SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
|
||||
@ -2738,17 +2755,23 @@ static bool isZeroShuffle(SDNode *N) {
|
||||
|
||||
/// getZeroVector - Returns a vector of specified type with all zero elements.
|
||||
///
|
||||
static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
|
||||
static SDOperand getZeroVector(MVT::ValueType VT, bool HasSSE2,
|
||||
SelectionDAG &DAG) {
|
||||
assert(MVT::isVector(VT) && "Expected a vector type");
|
||||
|
||||
// Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
|
||||
// type. This ensures they get CSE'd.
|
||||
SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
|
||||
SDOperand Vec;
|
||||
if (MVT::getSizeInBits(VT) == 64) // MMX
|
||||
if (MVT::getSizeInBits(VT) == 64) { // MMX
|
||||
SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
|
||||
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
|
||||
else // SSE
|
||||
} else if (HasSSE2) { // SSE2
|
||||
SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
|
||||
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
|
||||
} else { // SSE1
|
||||
SDOperand Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
|
||||
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
|
||||
}
|
||||
return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
|
||||
}
|
||||
|
||||
@ -2866,7 +2889,7 @@ static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
|
||||
V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
|
||||
NumElems >>= 1;
|
||||
}
|
||||
Mask = getZeroVector(MVT::v4i32, DAG);
|
||||
Mask = getZeroVector(MVT::v4i32, true, DAG);
|
||||
}
|
||||
|
||||
V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
|
||||
@ -2880,9 +2903,11 @@ static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
|
||||
/// element of V2 is swizzled into the zero/undef vector, landing at element
|
||||
/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
|
||||
static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
|
||||
bool isZero, SelectionDAG &DAG) {
|
||||
bool isZero, bool HasSSE2,
|
||||
SelectionDAG &DAG) {
|
||||
MVT::ValueType VT = V2.getValueType();
|
||||
SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
|
||||
SDOperand V1 = isZero
|
||||
? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
|
||||
unsigned NumElems = MVT::getVectorNumElements(V2.getValueType());
|
||||
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
|
||||
MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
|
||||
@ -2911,7 +2936,7 @@ static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
|
||||
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
|
||||
if (ThisIsNonZero && First) {
|
||||
if (NumZero)
|
||||
V = getZeroVector(MVT::v8i16, DAG);
|
||||
V = getZeroVector(MVT::v8i16, true, DAG);
|
||||
else
|
||||
V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
|
||||
First = false;
|
||||
@ -2956,7 +2981,7 @@ static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
|
||||
if (isNonZero) {
|
||||
if (First) {
|
||||
if (NumZero)
|
||||
V = getZeroVector(MVT::v8i16, DAG);
|
||||
V = getZeroVector(MVT::v8i16, true, DAG);
|
||||
else
|
||||
V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
|
||||
First = false;
|
||||
@ -2981,7 +3006,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
|
||||
|
||||
if (ISD::isBuildVectorAllOnes(Op.Val))
|
||||
return getOnesVector(Op.getValueType(), DAG);
|
||||
return getZeroVector(Op.getValueType(), DAG);
|
||||
return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
|
||||
}
|
||||
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
@ -3036,7 +3061,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
|
||||
// convert it to a vector with movd (S2V+shuffle to zero extend).
|
||||
Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
|
||||
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
|
||||
Item = getShuffleVectorZeroOrUndef(Item, 0, true, DAG);
|
||||
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
|
||||
Subtarget->hasSSE2(), DAG);
|
||||
|
||||
// Now we have our 32-bit value zero extended in the low element of
|
||||
// a vector. If Idx != 0, swizzle it into place.
|
||||
@ -3061,7 +3087,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
|
||||
(EVT != MVT::i64 || Subtarget->is64Bit())) {
|
||||
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
|
||||
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
|
||||
return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
|
||||
return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
|
||||
Subtarget->hasSSE2(), DAG);
|
||||
}
|
||||
|
||||
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
|
||||
@ -3076,7 +3103,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
|
||||
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
|
||||
|
||||
// Turn it into a shuffle of zero and zero-extended scalar to vector.
|
||||
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
|
||||
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
|
||||
Subtarget->hasSSE2(), DAG);
|
||||
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
|
||||
MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
|
||||
SmallVector<SDOperand, 8> MaskVec;
|
||||
@ -3105,7 +3133,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
|
||||
unsigned Idx = CountTrailingZeros_32(NonZeros);
|
||||
SDOperand V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
|
||||
Op.getOperand(Idx));
|
||||
return getShuffleVectorZeroOrUndef(V2, Idx, true, DAG);
|
||||
return getShuffleVectorZeroOrUndef(V2, Idx, true,
|
||||
Subtarget->hasSSE2(), DAG);
|
||||
}
|
||||
return SDOperand();
|
||||
}
|
||||
@ -3130,7 +3159,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
|
||||
for (unsigned i = 0; i < 4; ++i) {
|
||||
bool isZero = !(NonZeros & (1 << i));
|
||||
if (isZero)
|
||||
V[i] = getZeroVector(VT, DAG);
|
||||
V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
|
||||
else
|
||||
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
|
||||
}
|
||||
@ -3542,7 +3571,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
|
||||
return DAG.getNode(ISD::UNDEF, VT);
|
||||
|
||||
if (isZeroShuffle(Op.Val))
|
||||
return getZeroVector(VT, DAG);
|
||||
return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
|
||||
|
||||
if (isIdentityMask(PermMask.Val))
|
||||
return V1;
|
||||
|
@ -336,6 +336,14 @@ namespace llvm {
|
||||
/// that contains are placed at 16-byte boundaries while the rest are at
|
||||
/// 4-byte boundaries.
|
||||
virtual unsigned getByValTypeAlignment(const Type *Ty) const;
|
||||
|
||||
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
||||
/// store operations as result of memset, memcpy, and memmove lowering.
|
||||
/// It returns MVT::iAny if SelectionDAG should be responsible for
|
||||
/// determining it.
|
||||
virtual
|
||||
MVT::ValueType getOptimalMemOpType(uint64_t Size, unsigned Align,
|
||||
bool isSrcConst, bool isSrcStr) const;
|
||||
|
||||
/// LowerOperation - Provide custom lowering hooks for some operations.
|
||||
///
|
||||
|
Loading…
Reference in New Issue
Block a user