Make use of vector load and store operations to implement memcpy, memmove, and memset. Currently only X86 target is taking advantage of these.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51140 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Evan Cheng 2008-05-15 08:39:06 +00:00
parent 38503d4046
commit f0df03134e
5 changed files with 207 additions and 109 deletions

View File

@ -210,6 +210,13 @@ public:
return Objects[ObjectIdx+NumFixedObjects].Alignment;
}
/// setObjectAlignment - Change the alignment of the spcified stack object...
void setObjectAlignment(int ObjectIdx, unsigned Align) {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
}
/// getObjectOffset - Return the assigned stack offset of the specified object
/// from the incoming stack pointer.
///

View File

@ -510,6 +510,15 @@ public:
bool allowsUnalignedMemoryAccesses() const {
return allowUnalignedMemoryAccesses;
}
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// store operations as result of memset, memcpy, and memmove lowering.
/// It returns MVT::iAny if SelectionDAG should be responsible for
/// determining it.
virtual MVT::ValueType getOptimalMemOpType(uint64_t Size, unsigned Align,
bool isSrcConst, bool isSrcStr) const {
return MVT::iAny;
}
/// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
/// to implement llvm.setjmp.

View File

@ -2505,41 +2505,42 @@ SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
/// operand.
static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
SelectionDAG &DAG) {
MVT::ValueType CurVT = VT;
unsigned NumBits = MVT::isVector(VT) ?
MVT::getSizeInBits(MVT::getVectorElementType(VT)) : MVT::getSizeInBits(VT);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
uint64_t Val = C->getValue() & 255;
APInt Val = APInt(NumBits, C->getValue() & 255);
unsigned Shift = 8;
while (CurVT != MVT::i8) {
for (unsigned i = NumBits; i > 8; i >>= 1) {
Val = (Val << Shift) | Val;
Shift <<= 1;
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
}
return DAG.getConstant(Val, VT);
} else {
Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
unsigned Shift = 8;
while (CurVT != MVT::i8) {
Value =
DAG.getNode(ISD::OR, VT,
DAG.getNode(ISD::SHL, VT, Value,
DAG.getConstant(Shift, MVT::i8)), Value);
Shift <<= 1;
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
}
return Value;
if (MVT::isInteger(VT))
return DAG.getConstant(Val, VT);
return DAG.getConstantFP(APFloat(Val), VT);
}
Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
unsigned Shift = 8;
for (unsigned i = NumBits; i > 8; i >>= 1) {
Value = DAG.getNode(ISD::OR, VT,
DAG.getNode(ISD::SHL, VT, Value,
DAG.getConstant(Shift, MVT::i8)), Value);
Shift <<= 1;
}
return Value;
}
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDOperand getMemsetStringVal(MVT::ValueType VT,
SelectionDAG &DAG,
static SDOperand getMemsetStringVal(MVT::ValueType VT, SelectionDAG &DAG,
const TargetLowering &TLI,
std::string &Str, unsigned Offset) {
assert(!MVT::isVector(VT) && "Can't handle vector type here!");
unsigned NumBits = MVT::getSizeInBits(VT);
unsigned MSB = NumBits / 8;
uint64_t Val = 0;
unsigned MSB = MVT::getSizeInBits(VT) / 8;
if (TLI.isLittleEndian())
Offset = Offset + MSB - 1;
for (unsigned i = 0; i != MSB; ++i) {
@ -2550,56 +2551,119 @@ static SDOperand getMemsetStringVal(MVT::ValueType VT,
}
/// getMemBasePlusOffset - Returns base and offset node for the
///
static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
SelectionDAG &DAG) {
MVT::ValueType VT = Base.getValueType();
return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
}
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
/// to replace the memset / memcpy is below the threshold. It also returns the
/// types of the sequence of memory ops to perform memset / memcpy.
static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
unsigned Limit, uint64_t Size,
unsigned Align,
const TargetLowering &TLI) {
MVT::ValueType VT;
/// isMemSrcFromString - Returns true if memcpy source is a string constant.
///
static bool isMemSrcFromString(SDOperand Src, std::string &Str,
uint64_t &SrcOff) {
unsigned SrcDelta = 0;
GlobalAddressSDNode *G = NULL;
if (Src.getOpcode() == ISD::GlobalAddress)
G = cast<GlobalAddressSDNode>(Src);
else if (Src.getOpcode() == ISD::ADD &&
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
Src.getOperand(1).getOpcode() == ISD::Constant) {
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
}
if (!G)
return false;
if (TLI.allowsUnalignedMemoryAccesses()) {
VT = MVT::i64;
} else {
switch (Align & 7) {
case 0:
VT = MVT::i64;
break;
case 4:
VT = MVT::i32;
break;
case 2:
VT = MVT::i16;
break;
default:
VT = MVT::i8;
break;
GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
if (GV && GV->isConstant()) {
Str = GV->getStringValue(false);
if (!Str.empty()) {
SrcOff += SrcDelta;
return true;
}
}
MVT::ValueType LVT = MVT::i64;
while (!TLI.isTypeLegal(LVT))
LVT = (MVT::ValueType)((unsigned)LVT - 1);
assert(MVT::isInteger(LVT));
return false;
}
if (VT > LVT)
VT = LVT;
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
/// to replace the memset / memcpy is below the threshold. It also returns the
/// types of the sequence of memory ops to perform memset / memcpy.
static
bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
SDOperand Dst, SDOperand Src,
unsigned Limit, uint64_t Size, unsigned &Align,
SelectionDAG &DAG,
const TargetLowering &TLI) {
bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
std::string Str;
uint64_t SrcOff = 0;
bool isSrcStr = isMemSrcFromString(Src, Str, SrcOff);
bool isSrcConst = isa<ConstantSDNode>(Src);
MVT::ValueType VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
if (VT != MVT::iAny) {
unsigned NewAlign = (unsigned)
TLI.getTargetData()->getABITypeAlignment(MVT::getTypeForValueType(VT));
// If source is a string constant, this will require an unaligned load.
if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
if (Dst.getOpcode() != ISD::FrameIndex) {
// Can't change destination alignment. It requires a unaligned store.
if (AllowUnalign)
VT = MVT::iAny;
} else {
int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
if (MFI->isFixedObjectIndex(FI)) {
// Can't change destination alignment. It requires a unaligned store.
if (AllowUnalign)
VT = MVT::iAny;
} else {
// Give the stack frame object a larger alignment.
MFI->setObjectAlignment(FI, NewAlign);
Align = NewAlign;
}
}
}
}
if (VT == MVT::iAny) {
if (AllowUnalign) {
VT = MVT::i64;
} else {
switch (Align & 7) {
case 0: VT = MVT::i64; break;
case 4: VT = MVT::i32; break;
case 2: VT = MVT::i16; break;
default: VT = MVT::i8; break;
}
}
MVT::ValueType LVT = MVT::i64;
while (!TLI.isTypeLegal(LVT))
LVT = (MVT::ValueType)((unsigned)LVT - 1);
assert(MVT::isInteger(LVT));
if (VT > LVT)
VT = LVT;
}
unsigned NumMemOps = 0;
while (Size != 0) {
unsigned VTSize = MVT::getSizeInBits(VT) / 8;
while (VTSize > Size) {
VT = (MVT::ValueType)((unsigned)VT - 1);
VTSize >>= 1;
// For now, only use non-vector load / store's for the left-over pieces.
if (MVT::isVector(VT)) {
VT = MVT::i64;
while (!TLI.isTypeLegal(VT))
VT = (MVT::ValueType)((unsigned)VT - 1);
VTSize = MVT::getSizeInBits(VT) / 8;
} else {
VT = (MVT::ValueType)((unsigned)VT - 1);
VTSize >>= 1;
}
}
assert(MVT::isInteger(VT));
if (++NumMemOps > Limit)
return false;
@ -2613,8 +2677,7 @@ static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
SDOperand Chain, SDOperand Dst,
SDOperand Src, uint64_t Size,
unsigned Align,
bool AlwaysInline,
unsigned Align, bool AlwaysInline,
const Value *DstSV, uint64_t DstSVOff,
const Value *SrcSV, uint64_t SrcSVOff){
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
@ -2625,56 +2688,38 @@ static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
uint64_t Limit = -1;
if (!AlwaysInline)
Limit = TLI.getMaxStoresPerMemcpy();
if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
unsigned DstAlign = Align; // Destination alignment can change.
if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
DAG, TLI))
return SDOperand();
SmallVector<SDOperand, 8> OutChains;
unsigned NumMemOps = MemOps.size();
unsigned SrcDelta = 0;
GlobalAddressSDNode *G = NULL;
std::string Str;
bool CopyFromStr = false;
uint64_t SrcOff = 0, DstOff = 0;
bool CopyFromStr = isMemSrcFromString(Src, Str, SrcOff);
if (Src.getOpcode() == ISD::GlobalAddress)
G = cast<GlobalAddressSDNode>(Src);
else if (Src.getOpcode() == ISD::ADD &&
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
Src.getOperand(1).getOpcode() == ISD::Constant) {
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
}
if (G) {
GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
if (GV && GV->isConstant()) {
Str = GV->getStringValue(false);
if (!Str.empty()) {
CopyFromStr = true;
SrcOff += SrcDelta;
}
}
}
SmallVector<SDOperand, 8> OutChains;
unsigned NumMemOps = MemOps.size();
for (unsigned i = 0; i < NumMemOps; i++) {
MVT::ValueType VT = MemOps[i];
unsigned VTSize = MVT::getSizeInBits(VT) / 8;
SDOperand Value, Store;
if (CopyFromStr) {
if (CopyFromStr && !MVT::isVector(VT)) {
// It's unlikely a store of a vector immediate can be done in a single
// instruction. It would require a load from a constantpool first.
// FIXME: Handle cases where store of vector immediate is done in a
// single instruction.
Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
Store =
DAG.getStore(Chain, Value,
getMemBasePlusOffset(Dst, DstOff, DAG),
DstSV, DstSVOff + DstOff);
Store = DAG.getStore(Chain, Value,
getMemBasePlusOffset(Dst, DstOff, DAG),
DstSV, DstSVOff + DstOff);
} else {
Value = DAG.getLoad(VT, Chain,
getMemBasePlusOffset(Src, SrcOff, DAG),
SrcSV, SrcSVOff + SrcOff, false, Align);
Store =
DAG.getStore(Chain, Value,
getMemBasePlusOffset(Dst, DstOff, DAG),
DstSV, DstSVOff + DstOff, false, Align);
Store = DAG.getStore(Chain, Value,
getMemBasePlusOffset(Dst, DstOff, DAG),
DstSV, DstSVOff + DstOff, false, DstAlign);
}
OutChains.push_back(Store);
SrcOff += VTSize;
@ -2695,8 +2740,8 @@ static SDOperand getMemsetStores(SelectionDAG &DAG,
// Expand memset to a series of load/store ops if the size operand
// falls below a certain threshold.
std::vector<MVT::ValueType> MemOps;
if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
Size, Align, TLI))
if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
Size, Align, DAG, TLI))
return SDOperand();
SmallVector<SDOperand, 8> OutChains;

View File

@ -787,6 +787,23 @@ unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
return Align;
}
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// store operations as result of memset, memcpy, and memmove lowering.
/// It returns MVT::iAny if SelectionDAG should be responsible for
/// determining it.
MVT::ValueType
X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
bool isSrcConst, bool isSrcStr) const {
if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
return MVT::v4i32;
if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
return MVT::v4f32;
if (Subtarget->is64Bit() && Size >= 8)
return MVT::i64;
return MVT::i32;
}
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
/// jumptable.
SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
@ -2738,17 +2755,23 @@ static bool isZeroShuffle(SDNode *N) {
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
static SDOperand getZeroVector(MVT::ValueType VT, bool HasSSE2,
SelectionDAG &DAG) {
assert(MVT::isVector(VT) && "Expected a vector type");
// Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
// type. This ensures they get CSE'd.
SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
SDOperand Vec;
if (MVT::getSizeInBits(VT) == 64) // MMX
if (MVT::getSizeInBits(VT) == 64) { // MMX
SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
else // SSE
} else if (HasSSE2) { // SSE2
SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
} else { // SSE1
SDOperand Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
}
return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
}
@ -2866,7 +2889,7 @@ static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
NumElems >>= 1;
}
Mask = getZeroVector(MVT::v4i32, DAG);
Mask = getZeroVector(MVT::v4i32, true, DAG);
}
V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
@ -2880,9 +2903,11 @@ static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
/// element of V2 is swizzled into the zero/undef vector, landing at element
/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
bool isZero, SelectionDAG &DAG) {
bool isZero, bool HasSSE2,
SelectionDAG &DAG) {
MVT::ValueType VT = V2.getValueType();
SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
SDOperand V1 = isZero
? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
unsigned NumElems = MVT::getVectorNumElements(V2.getValueType());
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
@ -2911,7 +2936,7 @@ static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
if (ThisIsNonZero && First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, DAG);
V = getZeroVector(MVT::v8i16, true, DAG);
else
V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
First = false;
@ -2956,7 +2981,7 @@ static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
if (isNonZero) {
if (First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, DAG);
V = getZeroVector(MVT::v8i16, true, DAG);
else
V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
First = false;
@ -2981,7 +3006,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
if (ISD::isBuildVectorAllOnes(Op.Val))
return getOnesVector(Op.getValueType(), DAG);
return getZeroVector(Op.getValueType(), DAG);
return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
}
MVT::ValueType VT = Op.getValueType();
@ -3036,7 +3061,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
// convert it to a vector with movd (S2V+shuffle to zero extend).
Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true, DAG);
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
Subtarget->hasSSE2(), DAG);
// Now we have our 32-bit value zero extended in the low element of
// a vector. If Idx != 0, swizzle it into place.
@ -3061,7 +3087,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
(EVT != MVT::i64 || Subtarget->is64Bit())) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
Subtarget->hasSSE2(), DAG);
}
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
@ -3076,7 +3103,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
// Turn it into a shuffle of zero and zero-extended scalar to vector.
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
Subtarget->hasSSE2(), DAG);
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
SmallVector<SDOperand, 8> MaskVec;
@ -3105,7 +3133,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDOperand V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
Op.getOperand(Idx));
return getShuffleVectorZeroOrUndef(V2, Idx, true, DAG);
return getShuffleVectorZeroOrUndef(V2, Idx, true,
Subtarget->hasSSE2(), DAG);
}
return SDOperand();
}
@ -3130,7 +3159,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
for (unsigned i = 0; i < 4; ++i) {
bool isZero = !(NonZeros & (1 << i));
if (isZero)
V[i] = getZeroVector(VT, DAG);
V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
else
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
}
@ -3542,7 +3571,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
return DAG.getNode(ISD::UNDEF, VT);
if (isZeroShuffle(Op.Val))
return getZeroVector(VT, DAG);
return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
if (isIdentityMask(PermMask.Val))
return V1;

View File

@ -336,6 +336,14 @@ namespace llvm {
/// that contains are placed at 16-byte boundaries while the rest are at
/// 4-byte boundaries.
virtual unsigned getByValTypeAlignment(const Type *Ty) const;
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// store operations as result of memset, memcpy, and memmove lowering.
/// It returns MVT::iAny if SelectionDAG should be responsible for
/// determining it.
virtual
MVT::ValueType getOptimalMemOpType(uint64_t Size, unsigned Align,
bool isSrcConst, bool isSrcStr) const;
/// LowerOperation - Provide custom lowering hooks for some operations.
///