Move some rem transforms out of instcombine and into instsimplify.

This automagically provides a transform noticed by my super-optimizer
as occurring quite often: "rem x, (select cond, x, 1)" -> 0.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130694 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Duncan Sands 2011-05-02 16:27:02 +00:00
parent 2866edf120
commit f24ed77d24
3 changed files with 153 additions and 42 deletions

View File

@ -901,6 +901,111 @@ Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
}
/// SimplifyRem - Given operands for an SRem or URem, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
const TargetData *TD, const DominatorTree *DT,
unsigned MaxRecurse) {
if (Constant *C0 = dyn_cast<Constant>(Op0)) {
if (Constant *C1 = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { C0, C1 };
return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
}
}
bool isSigned = Opcode == Instruction::SRem;
// X % undef -> undef
if (match(Op1, m_Undef()))
return Op1;
// undef % X -> 0
if (match(Op0, m_Undef()))
return Constant::getNullValue(Op0->getType());
// 0 % X -> 0, we don't need to preserve faults!
if (match(Op0, m_Zero()))
return Op0;
// X % 0 -> undef, we don't need to preserve faults!
if (match(Op1, m_Zero()))
return UndefValue::get(Op0->getType());
// X % 1 -> 0
if (match(Op1, m_One()))
return Constant::getNullValue(Op0->getType());
if (Op0->getType()->isIntegerTy(1))
// It can't be remainder by zero, hence it must be remainder by one.
return Constant::getNullValue(Op0->getType());
// X % X -> 0
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
return V;
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
return V;
return 0;
}
/// SimplifySRemInst - Given operands for an SRem, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
const DominatorTree *DT, unsigned MaxRecurse) {
if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, DT, MaxRecurse))
return V;
return 0;
}
Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
const DominatorTree *DT) {
return ::SimplifySRemInst(Op0, Op1, TD, DT, RecursionLimit);
}
/// SimplifyURemInst - Given operands for a URem, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
const DominatorTree *DT, unsigned MaxRecurse) {
if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, DT, MaxRecurse))
return V;
return 0;
}
Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
const DominatorTree *DT) {
return ::SimplifyURemInst(Op0, Op1, TD, DT, RecursionLimit);
}
static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
const DominatorTree *, unsigned) {
// undef % X -> undef (the undef could be a snan).
if (match(Op0, m_Undef()))
return Op0;
// X % undef -> undef
if (match(Op1, m_Undef()))
return Op1;
return 0;
}
Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
const DominatorTree *DT) {
return ::SimplifyFRemInst(Op0, Op1, TD, DT, RecursionLimit);
}
/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
@ -1994,6 +2099,9 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, DT, MaxRecurse);
case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, DT, MaxRecurse);
case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, DT, MaxRecurse);
case Instruction::Shl:
return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
TD, DT, MaxRecurse);
@ -2088,6 +2196,15 @@ Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
case Instruction::FDiv:
Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
break;
case Instruction::SRem:
Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
break;
case Instruction::URem:
Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, DT);
break;
case Instruction::FRem:
Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
break;
case Instruction::Shl:
Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),

View File

@ -492,28 +492,6 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
return 0;
}
/// This function implements the transforms on rem instructions that work
/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
/// is used by the visitors to those instructions.
/// @brief Transforms common to all three rem instructions
Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<UndefValue>(Op0)) { // undef % X -> 0
if (I.getType()->isFPOrFPVectorTy())
return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
if (isa<UndefValue>(Op1))
return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
// Handle cases involving: rem X, (select Cond, Y, Z)
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
return &I;
return 0;
}
/// This function implements the transforms common to both integer remainder
/// instructions (urem and srem). It is called by the visitors to those integer
/// remainder instructions.
@ -521,26 +499,11 @@ Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Instruction *common = commonRemTransforms(I))
return common;
// X % X == 0
if (Op0 == Op1)
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// 0 % X == 0 for integer, we don't need to preserve faults!
if (Constant *LHS = dyn_cast<Constant>(Op0))
if (LHS->isNullValue())
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// Handle cases involving: rem X, (select Cond, Y, Z)
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
return &I;
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
// X % 0 == undef, we don't need to preserve faults!
if (RHS->equalsInt(0))
return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
if (RHS->equalsInt(1)) // X % 1 == 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
if (Instruction *R = FoldOpIntoSelect(I, SI))
@ -562,6 +525,9 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
Instruction *InstCombiner::visitURem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyURemInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *common = commonIRemTransforms(I))
return common;
@ -602,6 +568,9 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifySRemInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
@ -660,6 +629,14 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
}
Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
return commonRemTransforms(I);
}
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Handle cases involving: rem X, (select Cond, Y, Z)
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
return &I;
return 0;
}

View File

@ -0,0 +1,17 @@
; RUN: opt < %s -instsimplify -S | FileCheck %s
define i32 @select1(i32 %x, i1 %b) {
; CHECK: @select1
%rhs = select i1 %b, i32 %x, i32 1
%rem = srem i32 %x, %rhs
ret i32 %rem
; CHECK: ret i32 0
}
define i32 @select2(i32 %x, i1 %b) {
; CHECK: @select2
%rhs = select i1 %b, i32 %x, i32 1
%rem = urem i32 %x, %rhs
ret i32 %rem
; CHECK: ret i32 0
}