mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-19 02:42:58 +00:00
Make the Interpreter use libffi if it's available. Patch from Alexei Svitkine!
This requires a rebuild of 'configure' itself. I will be committing that next, but built with the wrong version of autoconf. Somebody who has the right one, please update it. As a side-note, because of the way autoconf works, all built tools will link against libffi, not just lli. If you know how to fix this, please let me know ... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62553 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
d0deec20f6
commit
f514e2d28f
@ -717,6 +717,11 @@ AC_SEARCH_LIBS(dlopen,dl,AC_DEFINE([HAVE_DLOPEN],[1],
|
||||
[Define if dlopen() is available on this platform.]),
|
||||
AC_MSG_WARN([dlopen() not found - disabling plugin support]))
|
||||
|
||||
dnl libffi is optional; used to call external functions from the interpreter
|
||||
AC_SEARCH_LIBS(ffi_call,ffi,AC_DEFINE([HAVE_LIBFFI],[1],
|
||||
[Define to 1 if you have the libffi library (-lffi).]),
|
||||
AC_MSG_WARN([libffi not found - disabling external calls from interpreter]))
|
||||
|
||||
dnl mallinfo is optional; the code can compile (minus features) without it
|
||||
AC_SEARCH_LIBS(mallinfo,malloc,AC_DEFINE([HAVE_MALLINFO],[1],
|
||||
[Define if mallinfo() is available on this platform.]))
|
||||
@ -779,6 +784,10 @@ else
|
||||
AC_SUBST(HAVE_PTHREAD, 0)
|
||||
fi
|
||||
|
||||
dnl Debian vs. the world.
|
||||
AC_CHECK_HEADER(ffi/ffi.h, AC_DEFINE(FFI_HEADER, ["ffi/ffi.h"], [Path to ffi.h]))
|
||||
AC_CHECK_HEADER(ffi.h, AC_DEFINE(FFI_HEADER, ["ffi.h"], [Path to ffi.h]))
|
||||
|
||||
dnl===-----------------------------------------------------------------------===
|
||||
dnl===
|
||||
dnl=== SECTION 7: Check for types and structures
|
||||
|
@ -10,18 +10,19 @@
|
||||
// This file contains both code to deal with invoking "external" functions, but
|
||||
// also contains code that implements "exported" external functions.
|
||||
//
|
||||
// External functions in the interpreter are implemented by
|
||||
// using the system's dynamic loader to look up the address of the function
|
||||
// we want to invoke. If a function is found, then one of the
|
||||
// many lle_* wrapper functions in this file will translate its arguments from
|
||||
// GenericValues to the types the function is actually expecting, before the
|
||||
// function is called.
|
||||
// There are currently two mechanisms for handling external functions in the
|
||||
// Interpreter. The first is to implement lle_* wrapper functions that are
|
||||
// specific to well-known library functions which manually translate the
|
||||
// arguments from GenericValues and make the call. If such a wrapper does
|
||||
// not exist, and libffi is available, then the Interpreter will attempt to
|
||||
// invoke the function using libffi, after finding its address.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Interpreter.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Config/config.h" // Detect libffi
|
||||
#include "llvm/Support/Streams.h"
|
||||
#include "llvm/System/DynamicLibrary.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
@ -32,18 +33,22 @@
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
|
||||
#ifdef __linux__
|
||||
#include <cxxabi.h>
|
||||
#ifdef HAVE_LIBFFI
|
||||
#include FFI_HEADER
|
||||
#endif
|
||||
|
||||
using std::vector;
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
|
||||
static ManagedStatic<std::map<const Function *, ExFunc> > Functions;
|
||||
typedef GenericValue (*ExFunc)(const FunctionType *,
|
||||
const std::vector<GenericValue> &);
|
||||
static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
|
||||
static std::map<std::string, ExFunc> FuncNames;
|
||||
|
||||
#ifdef HAVE_LIBFFI
|
||||
typedef void (*RawFunc)(void);
|
||||
static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
|
||||
#endif // HAVE_LIBFFI
|
||||
|
||||
static Interpreter *TheInterpreter;
|
||||
|
||||
static char getTypeID(const Type *Ty) {
|
||||
@ -89,34 +94,181 @@ static ExFunc lookupFunction(const Function *F) {
|
||||
if (FnPtr == 0) // Try calling a generic function... if it exists...
|
||||
FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
|
||||
("lle_X_"+F->getName()).c_str());
|
||||
if (FnPtr == 0)
|
||||
FnPtr = (ExFunc)(intptr_t)
|
||||
sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
|
||||
if (FnPtr != 0)
|
||||
Functions->insert(std::make_pair(F, FnPtr)); // Cache for later
|
||||
ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
|
||||
return FnPtr;
|
||||
}
|
||||
|
||||
#ifdef HAVE_LIBFFI
|
||||
static ffi_type *ffiTypeFor(const Type *Ty) {
|
||||
switch (Ty->getTypeID()) {
|
||||
case Type::VoidTyID: return &ffi_type_void;
|
||||
case Type::IntegerTyID:
|
||||
switch (cast<IntegerType>(Ty)->getBitWidth()) {
|
||||
case 8: return &ffi_type_sint8;
|
||||
case 16: return &ffi_type_sint16;
|
||||
case 32: return &ffi_type_sint32;
|
||||
case 64: return &ffi_type_sint64;
|
||||
}
|
||||
case Type::FloatTyID: return &ffi_type_float;
|
||||
case Type::DoubleTyID: return &ffi_type_double;
|
||||
case Type::PointerTyID: return &ffi_type_pointer;
|
||||
default: break;
|
||||
}
|
||||
// TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
|
||||
cerr << "Type could not be mapped for use with libffi.\n";
|
||||
abort();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
|
||||
void *ArgDataPtr) {
|
||||
switch (Ty->getTypeID()) {
|
||||
case Type::IntegerTyID:
|
||||
switch (cast<IntegerType>(Ty)->getBitWidth()) {
|
||||
case 8: {
|
||||
int8_t *I8Ptr = (int8_t *) ArgDataPtr;
|
||||
*I8Ptr = (int8_t) AV.IntVal.getZExtValue();
|
||||
return ArgDataPtr;
|
||||
}
|
||||
case 16: {
|
||||
int16_t *I16Ptr = (int16_t *) ArgDataPtr;
|
||||
*I16Ptr = (int16_t) AV.IntVal.getZExtValue();
|
||||
return ArgDataPtr;
|
||||
}
|
||||
case 32: {
|
||||
int32_t *I32Ptr = (int32_t *) ArgDataPtr;
|
||||
*I32Ptr = (int32_t) AV.IntVal.getZExtValue();
|
||||
return ArgDataPtr;
|
||||
}
|
||||
case 64: {
|
||||
int64_t *I64Ptr = (int64_t *) ArgDataPtr;
|
||||
*I64Ptr = (int64_t) AV.IntVal.getZExtValue();
|
||||
return ArgDataPtr;
|
||||
}
|
||||
}
|
||||
case Type::FloatTyID: {
|
||||
float *FloatPtr = (float *) ArgDataPtr;
|
||||
*FloatPtr = AV.DoubleVal;
|
||||
return ArgDataPtr;
|
||||
}
|
||||
case Type::DoubleTyID: {
|
||||
double *DoublePtr = (double *) ArgDataPtr;
|
||||
*DoublePtr = AV.DoubleVal;
|
||||
return ArgDataPtr;
|
||||
}
|
||||
case Type::PointerTyID: {
|
||||
void **PtrPtr = (void **) ArgDataPtr;
|
||||
*PtrPtr = GVTOP(AV);
|
||||
return ArgDataPtr;
|
||||
}
|
||||
default: break;
|
||||
}
|
||||
// TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
|
||||
cerr << "Type value could not be mapped for use with libffi.\n";
|
||||
abort();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static bool ffiInvoke(RawFunc Fn, Function *F,
|
||||
const std::vector<GenericValue> &ArgVals,
|
||||
const TargetData *TD, GenericValue &Result) {
|
||||
ffi_cif cif;
|
||||
const FunctionType *FTy = F->getFunctionType();
|
||||
const unsigned NumArgs = F->arg_size();
|
||||
|
||||
// TODO: We don't have type information about the remaining arguments, because
|
||||
// this information is never passed into ExecutionEngine::runFunction().
|
||||
if (ArgVals.size() > NumArgs && F->isVarArg()) {
|
||||
cerr << "Calling external var arg function '" << F->getName()
|
||||
<< "' is not supported by the Interpreter.\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
unsigned ArgBytes = 0;
|
||||
|
||||
std::vector<ffi_type*> args(NumArgs);
|
||||
for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
|
||||
A != E; ++A) {
|
||||
const unsigned ArgNo = A->getArgNo();
|
||||
const Type *ArgTy = FTy->getParamType(ArgNo);
|
||||
args[ArgNo] = ffiTypeFor(ArgTy);
|
||||
ArgBytes += TD->getTypeStoreSize(ArgTy);
|
||||
}
|
||||
|
||||
uint8_t *ArgData = (uint8_t*) alloca(ArgBytes);
|
||||
uint8_t *ArgDataPtr = ArgData;
|
||||
std::vector<void*> values(NumArgs);
|
||||
for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
|
||||
A != E; ++A) {
|
||||
const unsigned ArgNo = A->getArgNo();
|
||||
const Type *ArgTy = FTy->getParamType(ArgNo);
|
||||
values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
|
||||
ArgDataPtr += TD->getTypeStoreSize(ArgTy);
|
||||
}
|
||||
|
||||
const Type *RetTy = FTy->getReturnType();
|
||||
ffi_type *rtype = ffiTypeFor(RetTy);
|
||||
|
||||
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
|
||||
void *ret = NULL;
|
||||
if (RetTy->getTypeID() != Type::VoidTyID)
|
||||
ret = alloca(TD->getTypeStoreSize(RetTy));
|
||||
ffi_call(&cif, Fn, ret, &values[0]);
|
||||
switch (RetTy->getTypeID()) {
|
||||
case Type::IntegerTyID:
|
||||
switch (cast<IntegerType>(RetTy)->getBitWidth()) {
|
||||
case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break;
|
||||
case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break;
|
||||
case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break;
|
||||
case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break;
|
||||
}
|
||||
break;
|
||||
case Type::FloatTyID: Result.FloatVal = *(float *) ret; break;
|
||||
case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break;
|
||||
case Type::PointerTyID: Result.PointerVal = *(void **) ret; break;
|
||||
default: break;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
#endif // HAVE_LIBFFI
|
||||
|
||||
GenericValue Interpreter::callExternalFunction(Function *F,
|
||||
const std::vector<GenericValue> &ArgVals) {
|
||||
TheInterpreter = this;
|
||||
|
||||
// Do a lookup to see if the function is in our cache... this should just be a
|
||||
// deferred annotation!
|
||||
std::map<const Function *, ExFunc>::iterator FI = Functions->find(F);
|
||||
ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second;
|
||||
if (Fn == 0) {
|
||||
cerr << "Tried to execute an unknown external function: "
|
||||
<< F->getType()->getDescription() << " " << F->getName() << "\n";
|
||||
if (F->getName() == "__main")
|
||||
return GenericValue();
|
||||
abort();
|
||||
std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
|
||||
if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
|
||||
: FI->second)
|
||||
return Fn(F->getFunctionType(), ArgVals);
|
||||
|
||||
#ifdef HAVE_LIBFFI
|
||||
std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
|
||||
RawFunc RawFn;
|
||||
if (RF == RawFunctions->end()) {
|
||||
RawFn = (RawFunc)(intptr_t)
|
||||
sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
|
||||
if (RawFn != 0)
|
||||
RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
|
||||
} else {
|
||||
RawFn = RF->second;
|
||||
}
|
||||
|
||||
// TODO: FIXME when types are not const!
|
||||
GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
|
||||
ArgVals);
|
||||
return Result;
|
||||
GenericValue Result;
|
||||
if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
|
||||
return Result;
|
||||
#endif // HAVE_LIBFFI
|
||||
|
||||
cerr << "Tried to execute an unknown external function: "
|
||||
<< F->getType()->getDescription() << " " << F->getName() << "\n";
|
||||
if (F->getName() != "__main")
|
||||
abort();
|
||||
return GenericValue();
|
||||
}
|
||||
|
||||
|
||||
@ -125,24 +277,9 @@ GenericValue Interpreter::callExternalFunction(Function *F,
|
||||
//
|
||||
extern "C" { // Don't add C++ manglings to llvm mangling :)
|
||||
|
||||
// void putchar(ubyte)
|
||||
GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
|
||||
cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
|
||||
return Args[0];
|
||||
}
|
||||
|
||||
// void _IO_putc(int c, FILE* fp)
|
||||
GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
|
||||
#ifdef __linux__
|
||||
_IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
|
||||
#else
|
||||
assert(0 && "Can't call _IO_putc on this platform");
|
||||
#endif
|
||||
return Args[0];
|
||||
}
|
||||
|
||||
// void atexit(Function*)
|
||||
GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
GenericValue lle_X_atexit(const FunctionType *FT,
|
||||
const std::vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
|
||||
GenericValue GV;
|
||||
@ -151,163 +288,23 @@ GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
}
|
||||
|
||||
// void exit(int)
|
||||
GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
GenericValue lle_X_exit(const FunctionType *FT,
|
||||
const std::vector<GenericValue> &Args) {
|
||||
TheInterpreter->exitCalled(Args[0]);
|
||||
return GenericValue();
|
||||
}
|
||||
|
||||
// void abort(void)
|
||||
GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
GenericValue lle_X_abort(const FunctionType *FT,
|
||||
const std::vector<GenericValue> &Args) {
|
||||
raise (SIGABRT);
|
||||
return GenericValue();
|
||||
}
|
||||
|
||||
// void *malloc(uint)
|
||||
GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1 && "Malloc expects one argument!");
|
||||
assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
|
||||
return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
|
||||
}
|
||||
|
||||
// void *calloc(uint, uint)
|
||||
GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2 && "calloc expects two arguments!");
|
||||
assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
|
||||
return PTOGV(calloc(Args[0].IntVal.getZExtValue(),
|
||||
Args[1].IntVal.getZExtValue()));
|
||||
}
|
||||
|
||||
// void *calloc(uint, uint)
|
||||
GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2 && "calloc expects two arguments!");
|
||||
assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
|
||||
return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
|
||||
}
|
||||
|
||||
// void free(void *)
|
||||
GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
free(GVTOP(Args[0]));
|
||||
return GenericValue();
|
||||
}
|
||||
|
||||
// int atoi(char *)
|
||||
GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// double pow(double, double)
|
||||
GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2);
|
||||
GenericValue GV;
|
||||
GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
|
||||
return GV;
|
||||
}
|
||||
|
||||
// double sin(double)
|
||||
GenericValue lle_X_sin(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.DoubleVal = sin(Args[0].DoubleVal);
|
||||
return GV;
|
||||
}
|
||||
|
||||
// double cos(double)
|
||||
GenericValue lle_X_cos(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.DoubleVal = cos(Args[0].DoubleVal);
|
||||
return GV;
|
||||
}
|
||||
|
||||
// double exp(double)
|
||||
GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.DoubleVal = exp(Args[0].DoubleVal);
|
||||
return GV;
|
||||
}
|
||||
|
||||
// double sqrt(double)
|
||||
GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.DoubleVal = sqrt(Args[0].DoubleVal);
|
||||
return GV;
|
||||
}
|
||||
|
||||
// double log(double)
|
||||
GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.DoubleVal = log(Args[0].DoubleVal);
|
||||
return GV;
|
||||
}
|
||||
|
||||
// double floor(double)
|
||||
GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.DoubleVal = floor(Args[0].DoubleVal);
|
||||
return GV;
|
||||
}
|
||||
|
||||
#ifdef HAVE_RAND48
|
||||
|
||||
// double drand48()
|
||||
GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.empty());
|
||||
GenericValue GV;
|
||||
GV.DoubleVal = drand48();
|
||||
return GV;
|
||||
}
|
||||
|
||||
// long lrand48()
|
||||
GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.empty());
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, lrand48());
|
||||
return GV;
|
||||
}
|
||||
|
||||
// void srand48(long)
|
||||
GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
srand48(Args[0].IntVal.getZExtValue());
|
||||
return GenericValue();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// int rand()
|
||||
GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.empty());
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, rand());
|
||||
return GV;
|
||||
}
|
||||
|
||||
// void srand(uint)
|
||||
GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
srand(Args[0].IntVal.getZExtValue());
|
||||
return GenericValue();
|
||||
}
|
||||
|
||||
// int puts(const char*)
|
||||
GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
|
||||
// int sprintf(char *, const char *, ...) - a very rough implementation to make
|
||||
// output useful.
|
||||
GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
GenericValue lle_X_sprintf(const FunctionType *FT,
|
||||
const std::vector<GenericValue> &Args) {
|
||||
char *OutputBuffer = (char *)GVTOP(Args[0]);
|
||||
const char *FmtStr = (const char *)GVTOP(Args[1]);
|
||||
unsigned ArgNo = 2;
|
||||
@ -384,10 +381,12 @@ GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int printf(sbyte *, ...) - a very rough implementation to make output useful.
|
||||
GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
// int printf(const char *, ...) - a very rough implementation to make output
|
||||
// useful.
|
||||
GenericValue lle_X_printf(const FunctionType *FT,
|
||||
const std::vector<GenericValue> &Args) {
|
||||
char Buffer[10000];
|
||||
vector<GenericValue> NewArgs;
|
||||
std::vector<GenericValue> NewArgs;
|
||||
NewArgs.push_back(PTOGV((void*)&Buffer[0]));
|
||||
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
|
||||
GenericValue GV = lle_X_sprintf(FT, NewArgs);
|
||||
@ -472,7 +471,8 @@ static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
|
||||
}
|
||||
|
||||
// int sscanf(const char *format, ...);
|
||||
GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
|
||||
GenericValue lle_X_sscanf(const FunctionType *FT,
|
||||
const std::vector<GenericValue> &args) {
|
||||
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
|
||||
|
||||
char *Args[10];
|
||||
@ -488,7 +488,8 @@ GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
|
||||
}
|
||||
|
||||
// int scanf(const char *format, ...);
|
||||
GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
|
||||
GenericValue lle_X_scanf(const FunctionType *FT,
|
||||
const std::vector<GenericValue> &args) {
|
||||
assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
|
||||
|
||||
char *Args[10];
|
||||
@ -503,324 +504,33 @@ GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
|
||||
return GV;
|
||||
}
|
||||
|
||||
|
||||
// int clock(void) - Profiling implementation
|
||||
GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
extern unsigned int clock(void);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, clock());
|
||||
return GV;
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// String Functions...
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// int strcmp(const char *S1, const char *S2);
|
||||
GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2);
|
||||
GenericValue Ret;
|
||||
Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
|
||||
return Ret;
|
||||
}
|
||||
|
||||
// char *strcat(char *Dest, const char *src);
|
||||
GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2);
|
||||
assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
|
||||
return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
|
||||
}
|
||||
|
||||
// char *strcpy(char *Dest, const char *src);
|
||||
GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2);
|
||||
assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
|
||||
return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
|
||||
}
|
||||
|
||||
static GenericValue size_t_to_GV (size_t n) {
|
||||
GenericValue Ret;
|
||||
if (sizeof (size_t) == sizeof (uint64_t)) {
|
||||
Ret.IntVal = APInt(64, n);
|
||||
} else {
|
||||
assert (sizeof (size_t) == sizeof (unsigned int));
|
||||
Ret.IntVal = APInt(32, n);
|
||||
}
|
||||
return Ret;
|
||||
}
|
||||
|
||||
static size_t GV_to_size_t (GenericValue GV) {
|
||||
size_t count;
|
||||
if (sizeof (size_t) == sizeof (uint64_t)) {
|
||||
count = (size_t)GV.IntVal.getZExtValue();
|
||||
} else {
|
||||
assert (sizeof (size_t) == sizeof (unsigned int));
|
||||
count = (size_t)GV.IntVal.getZExtValue();
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// size_t strlen(const char *src);
|
||||
GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
|
||||
return size_t_to_GV (strlenResult);
|
||||
}
|
||||
|
||||
// char *strdup(const char *src);
|
||||
GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
|
||||
return PTOGV(strdup((char*)GVTOP(Args[0])));
|
||||
}
|
||||
|
||||
// char *__strdup(const char *src);
|
||||
GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
|
||||
return PTOGV(strdup((char*)GVTOP(Args[0])));
|
||||
}
|
||||
|
||||
// void *memset(void *S, int C, size_t N)
|
||||
GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 3);
|
||||
size_t count = GV_to_size_t (Args[2]);
|
||||
assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
|
||||
return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()),
|
||||
count));
|
||||
}
|
||||
|
||||
// void *memcpy(void *Dest, void *src, size_t Size);
|
||||
GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 3);
|
||||
assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
|
||||
size_t count = GV_to_size_t (Args[2]);
|
||||
return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
|
||||
}
|
||||
|
||||
// void *memcpy(void *Dest, void *src, size_t Size);
|
||||
GenericValue lle_X_memmove(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 3);
|
||||
assert(isa<PointerType>(FT->getReturnType()) && "memmove must return pointer");
|
||||
size_t count = GV_to_size_t (Args[2]);
|
||||
return PTOGV(memmove((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// IO Functions...
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// getFILE - Turn a pointer in the host address space into a legit pointer in
|
||||
// the interpreter address space. This is an identity transformation.
|
||||
#define getFILE(ptr) ((FILE*)ptr)
|
||||
|
||||
// FILE *fopen(const char *filename, const char *mode);
|
||||
GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2);
|
||||
assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
|
||||
return PTOGV(fopen((const char *)GVTOP(Args[0]),
|
||||
(const char *)GVTOP(Args[1])));
|
||||
}
|
||||
|
||||
// int fclose(FILE *F);
|
||||
GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int feof(FILE *stream);
|
||||
GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
|
||||
GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
|
||||
GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 4);
|
||||
size_t result;
|
||||
|
||||
result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
|
||||
GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
|
||||
return size_t_to_GV (result);
|
||||
}
|
||||
|
||||
// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
|
||||
GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 4);
|
||||
size_t result;
|
||||
|
||||
result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
|
||||
GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
|
||||
return size_t_to_GV (result);
|
||||
}
|
||||
|
||||
// char *fgets(char *s, int n, FILE *stream);
|
||||
GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 3);
|
||||
return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
|
||||
getFILE(GVTOP(Args[2]))));
|
||||
}
|
||||
|
||||
// FILE *freopen(const char *path, const char *mode, FILE *stream);
|
||||
GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 3);
|
||||
assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
|
||||
return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
|
||||
getFILE(GVTOP(Args[2]))));
|
||||
}
|
||||
|
||||
// int fflush(FILE *stream);
|
||||
GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int getc(FILE *stream);
|
||||
GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int _IO_getc(FILE *stream);
|
||||
GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
|
||||
return lle_X_getc(F, Args);
|
||||
}
|
||||
|
||||
// int fputc(int C, FILE *stream);
|
||||
GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(),
|
||||
getFILE(GVTOP(Args[1]))));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int ungetc(int C, FILE *stream);
|
||||
GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 2);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(),
|
||||
getFILE(GVTOP(Args[1]))));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int ferror (FILE *stream);
|
||||
GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
|
||||
// useful.
|
||||
GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
|
||||
// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
|
||||
// output useful.
|
||||
GenericValue lle_X_fprintf(const FunctionType *FT,
|
||||
const std::vector<GenericValue> &Args) {
|
||||
assert(Args.size() >= 2);
|
||||
char Buffer[10000];
|
||||
vector<GenericValue> NewArgs;
|
||||
std::vector<GenericValue> NewArgs;
|
||||
NewArgs.push_back(PTOGV(Buffer));
|
||||
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
|
||||
GenericValue GV = lle_X_sprintf(FT, NewArgs);
|
||||
|
||||
fputs(Buffer, getFILE(GVTOP(Args[0])));
|
||||
fputs(Buffer, (FILE *) GVTOP(Args[0]));
|
||||
return GV;
|
||||
}
|
||||
|
||||
// int __cxa_guard_acquire (__guard *g);
|
||||
GenericValue lle_X___cxa_guard_acquire(FunctionType *FT,
|
||||
const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
GenericValue GV;
|
||||
#ifdef __linux__
|
||||
GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire (
|
||||
(__cxxabiv1::__guard*)GVTOP(Args[0])));
|
||||
#else
|
||||
assert(0 && "Can't call __cxa_guard_acquire on this platform");
|
||||
#endif
|
||||
return GV;
|
||||
}
|
||||
|
||||
// void __cxa_guard_release (__guard *g);
|
||||
GenericValue lle_X___cxa_guard_release(FunctionType *FT,
|
||||
const vector<GenericValue> &Args) {
|
||||
assert(Args.size() == 1);
|
||||
#ifdef __linux__
|
||||
__cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0]));
|
||||
#else
|
||||
assert(0 && "Can't call __cxa_guard_release on this platform");
|
||||
#endif
|
||||
return GenericValue();
|
||||
}
|
||||
|
||||
} // End extern "C"
|
||||
|
||||
|
||||
void Interpreter::initializeExternalFunctions() {
|
||||
FuncNames["lle_X_putchar"] = lle_X_putchar;
|
||||
FuncNames["lle_X__IO_putc"] = lle_X__IO_putc;
|
||||
FuncNames["lle_X_atexit"] = lle_X_atexit;
|
||||
FuncNames["lle_X_exit"] = lle_X_exit;
|
||||
FuncNames["lle_X_abort"] = lle_X_abort;
|
||||
FuncNames["lle_X_malloc"] = lle_X_malloc;
|
||||
FuncNames["lle_X_calloc"] = lle_X_calloc;
|
||||
FuncNames["lle_X_realloc"] = lle_X_realloc;
|
||||
FuncNames["lle_X_free"] = lle_X_free;
|
||||
FuncNames["lle_X_atoi"] = lle_X_atoi;
|
||||
FuncNames["lle_X_pow"] = lle_X_pow;
|
||||
FuncNames["lle_X_sin"] = lle_X_sin;
|
||||
FuncNames["lle_X_cos"] = lle_X_cos;
|
||||
FuncNames["lle_X_exp"] = lle_X_exp;
|
||||
FuncNames["lle_X_log"] = lle_X_log;
|
||||
FuncNames["lle_X_floor"] = lle_X_floor;
|
||||
FuncNames["lle_X_srand"] = lle_X_srand;
|
||||
FuncNames["lle_X_rand"] = lle_X_rand;
|
||||
#ifdef HAVE_RAND48
|
||||
FuncNames["lle_X_drand48"] = lle_X_drand48;
|
||||
FuncNames["lle_X_srand48"] = lle_X_srand48;
|
||||
FuncNames["lle_X_lrand48"] = lle_X_lrand48;
|
||||
#endif
|
||||
FuncNames["lle_X_sqrt"] = lle_X_sqrt;
|
||||
FuncNames["lle_X_puts"] = lle_X_puts;
|
||||
|
||||
FuncNames["lle_X_printf"] = lle_X_printf;
|
||||
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
|
||||
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
|
||||
FuncNames["lle_X_scanf"] = lle_X_scanf;
|
||||
FuncNames["lle_i_clock"] = lle_i_clock;
|
||||
|
||||
FuncNames["lle_X_strcmp"] = lle_X_strcmp;
|
||||
FuncNames["lle_X_strcat"] = lle_X_strcat;
|
||||
FuncNames["lle_X_strcpy"] = lle_X_strcpy;
|
||||
FuncNames["lle_X_strlen"] = lle_X_strlen;
|
||||
FuncNames["lle_X___strdup"] = lle_X___strdup;
|
||||
FuncNames["lle_X_memset"] = lle_X_memset;
|
||||
FuncNames["lle_X_memcpy"] = lle_X_memcpy;
|
||||
FuncNames["lle_X_memmove"] = lle_X_memmove;
|
||||
|
||||
FuncNames["lle_X_fopen"] = lle_X_fopen;
|
||||
FuncNames["lle_X_fclose"] = lle_X_fclose;
|
||||
FuncNames["lle_X_feof"] = lle_X_feof;
|
||||
FuncNames["lle_X_fread"] = lle_X_fread;
|
||||
FuncNames["lle_X_fwrite"] = lle_X_fwrite;
|
||||
FuncNames["lle_X_fgets"] = lle_X_fgets;
|
||||
FuncNames["lle_X_fflush"] = lle_X_fflush;
|
||||
FuncNames["lle_X_fgetc"] = lle_X_getc;
|
||||
FuncNames["lle_X_getc"] = lle_X_getc;
|
||||
FuncNames["lle_X__IO_getc"] = lle_X__IO_getc;
|
||||
FuncNames["lle_X_fputc"] = lle_X_fputc;
|
||||
FuncNames["lle_X_ungetc"] = lle_X_ungetc;
|
||||
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
|
||||
FuncNames["lle_X_freopen"] = lle_X_freopen;
|
||||
|
||||
FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire;
|
||||
FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release;
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user