MathExtras.h: add LLVM_CONSTEXPR where simple

Summary:
This change adds `LLVM_CONSTEXPR` to functions selected as follows:
- the body is already valid under C++11 for a `constexpr` function,
- the evaluation of the function, given constant arguments, will not
  fail during the evaluation of a constant expression, and
- the above properties are easily verifiable at a glance.

Note: the evaluation of the function cannot fail if the instantiation
triggers a static assertion failure.

Reviewers: faisalv, rsmith, aaron.ballman

Subscribers: cfe-commits

Differential Revision: https://reviews.llvm.org/D22824


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277269 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Hubert Tong 2016-07-30 13:38:51 +00:00
parent 90978a6b8f
commit f84abb4f62

View File

@ -245,44 +245,44 @@ T reverseBits(T Val) {
// ambiguity. // ambiguity.
/// Hi_32 - This function returns the high 32 bits of a 64 bit value. /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
inline uint32_t Hi_32(uint64_t Value) { LLVM_CONSTEXPR inline uint32_t Hi_32(uint64_t Value) {
return static_cast<uint32_t>(Value >> 32); return static_cast<uint32_t>(Value >> 32);
} }
/// Lo_32 - This function returns the low 32 bits of a 64 bit value. /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
inline uint32_t Lo_32(uint64_t Value) { LLVM_CONSTEXPR inline uint32_t Lo_32(uint64_t Value) {
return static_cast<uint32_t>(Value); return static_cast<uint32_t>(Value);
} }
/// Make_64 - This functions makes a 64-bit integer from a high / low pair of /// Make_64 - This functions makes a 64-bit integer from a high / low pair of
/// 32-bit integers. /// 32-bit integers.
inline uint64_t Make_64(uint32_t High, uint32_t Low) { LLVM_CONSTEXPR inline uint64_t Make_64(uint32_t High, uint32_t Low) {
return ((uint64_t)High << 32) | (uint64_t)Low; return ((uint64_t)High << 32) | (uint64_t)Low;
} }
/// isInt - Checks if an integer fits into the given bit width. /// isInt - Checks if an integer fits into the given bit width.
template<unsigned N> template<unsigned N>
inline bool isInt(int64_t x) { LLVM_CONSTEXPR inline bool isInt(int64_t x) {
return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
} }
// Template specializations to get better code for common cases. // Template specializations to get better code for common cases.
template<> template<>
inline bool isInt<8>(int64_t x) { LLVM_CONSTEXPR inline bool isInt<8>(int64_t x) {
return static_cast<int8_t>(x) == x; return static_cast<int8_t>(x) == x;
} }
template<> template<>
inline bool isInt<16>(int64_t x) { LLVM_CONSTEXPR inline bool isInt<16>(int64_t x) {
return static_cast<int16_t>(x) == x; return static_cast<int16_t>(x) == x;
} }
template<> template<>
inline bool isInt<32>(int64_t x) { LLVM_CONSTEXPR inline bool isInt<32>(int64_t x) {
return static_cast<int32_t>(x) == x; return static_cast<int32_t>(x) == x;
} }
/// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
/// left by S. /// left by S.
template<unsigned N, unsigned S> template<unsigned N, unsigned S>
inline bool isShiftedInt(int64_t x) { LLVM_CONSTEXPR inline bool isShiftedInt(int64_t x) {
static_assert( static_assert(
N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
@ -298,32 +298,34 @@ inline bool isShiftedInt(int64_t x) {
/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
/// left too many places. /// left too many places.
template <unsigned N> template <unsigned N>
inline typename std::enable_if<(N < 64), bool>::type isUInt(uint64_t X) { LLVM_CONSTEXPR inline typename std::enable_if<(N < 64), bool>::type
isUInt(uint64_t X) {
static_assert(N > 0, "isUInt<0> doesn't make sense"); static_assert(N > 0, "isUInt<0> doesn't make sense");
return X < (UINT64_C(1) << (N)); return X < (UINT64_C(1) << (N));
} }
template <unsigned N> template <unsigned N>
inline typename std::enable_if<N >= 64, bool>::type isUInt(uint64_t X) { LLVM_CONSTEXPR inline typename std::enable_if<N >= 64, bool>::type
isUInt(uint64_t X) {
return true; return true;
} }
// Template specializations to get better code for common cases. // Template specializations to get better code for common cases.
template<> template<>
inline bool isUInt<8>(uint64_t x) { LLVM_CONSTEXPR inline bool isUInt<8>(uint64_t x) {
return static_cast<uint8_t>(x) == x; return static_cast<uint8_t>(x) == x;
} }
template<> template<>
inline bool isUInt<16>(uint64_t x) { LLVM_CONSTEXPR inline bool isUInt<16>(uint64_t x) {
return static_cast<uint16_t>(x) == x; return static_cast<uint16_t>(x) == x;
} }
template<> template<>
inline bool isUInt<32>(uint64_t x) { LLVM_CONSTEXPR inline bool isUInt<32>(uint64_t x) {
return static_cast<uint32_t>(x) == x; return static_cast<uint32_t>(x) == x;
} }
/// Checks if a unsigned integer is an N bit number shifted left by S. /// Checks if a unsigned integer is an N bit number shifted left by S.
template<unsigned N, unsigned S> template<unsigned N, unsigned S>
inline bool isShiftedUInt(uint64_t x) { LLVM_CONSTEXPR inline bool isShiftedUInt(uint64_t x) {
static_assert( static_assert(
N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
static_assert(N + S <= 64, static_assert(N + S <= 64,
@ -375,39 +377,39 @@ inline bool isIntN(unsigned N, int64_t x) {
/// isMask_32 - This function returns true if the argument is a non-empty /// isMask_32 - This function returns true if the argument is a non-empty
/// sequence of ones starting at the least significant bit with the remainder /// sequence of ones starting at the least significant bit with the remainder
/// zero (32 bit version). Ex. isMask_32(0x0000FFFFU) == true. /// zero (32 bit version). Ex. isMask_32(0x0000FFFFU) == true.
inline bool isMask_32(uint32_t Value) { LLVM_CONSTEXPR inline bool isMask_32(uint32_t Value) {
return Value && ((Value + 1) & Value) == 0; return Value && ((Value + 1) & Value) == 0;
} }
/// isMask_64 - This function returns true if the argument is a non-empty /// isMask_64 - This function returns true if the argument is a non-empty
/// sequence of ones starting at the least significant bit with the remainder /// sequence of ones starting at the least significant bit with the remainder
/// zero (64 bit version). /// zero (64 bit version).
inline bool isMask_64(uint64_t Value) { LLVM_CONSTEXPR inline bool isMask_64(uint64_t Value) {
return Value && ((Value + 1) & Value) == 0; return Value && ((Value + 1) & Value) == 0;
} }
/// isShiftedMask_32 - This function returns true if the argument contains a /// isShiftedMask_32 - This function returns true if the argument contains a
/// non-empty sequence of ones with the remainder zero (32 bit version.) /// non-empty sequence of ones with the remainder zero (32 bit version.)
/// Ex. isShiftedMask_32(0x0000FF00U) == true. /// Ex. isShiftedMask_32(0x0000FF00U) == true.
inline bool isShiftedMask_32(uint32_t Value) { LLVM_CONSTEXPR inline bool isShiftedMask_32(uint32_t Value) {
return Value && isMask_32((Value - 1) | Value); return Value && isMask_32((Value - 1) | Value);
} }
/// isShiftedMask_64 - This function returns true if the argument contains a /// isShiftedMask_64 - This function returns true if the argument contains a
/// non-empty sequence of ones with the remainder zero (64 bit version.) /// non-empty sequence of ones with the remainder zero (64 bit version.)
inline bool isShiftedMask_64(uint64_t Value) { LLVM_CONSTEXPR inline bool isShiftedMask_64(uint64_t Value) {
return Value && isMask_64((Value - 1) | Value); return Value && isMask_64((Value - 1) | Value);
} }
/// isPowerOf2_32 - This function returns true if the argument is a power of /// isPowerOf2_32 - This function returns true if the argument is a power of
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
inline bool isPowerOf2_32(uint32_t Value) { LLVM_CONSTEXPR inline bool isPowerOf2_32(uint32_t Value) {
return Value && !(Value & (Value - 1)); return Value && !(Value & (Value - 1));
} }
/// isPowerOf2_64 - This function returns true if the argument is a power of two /// isPowerOf2_64 - This function returns true if the argument is a power of two
/// > 0 (64 bit edition.) /// > 0 (64 bit edition.)
inline bool isPowerOf2_64(uint64_t Value) { LLVM_CONSTEXPR inline bool isPowerOf2_64(uint64_t Value) {
return Value && !(Value & (Value - int64_t(1L))); return Value && !(Value & (Value - int64_t(1L)));
} }
@ -599,7 +601,7 @@ inline uint32_t FloatToBits(float Float) {
/// MinAlign - A and B are either alignments or offsets. Return the minimum /// MinAlign - A and B are either alignments or offsets. Return the minimum
/// alignment that may be assumed after adding the two together. /// alignment that may be assumed after adding the two together.
inline uint64_t MinAlign(uint64_t A, uint64_t B) { LLVM_CONSTEXPR inline uint64_t MinAlign(uint64_t A, uint64_t B) {
// The largest power of 2 that divides both A and B. // The largest power of 2 that divides both A and B.
// //
// Replace "-Value" by "1+~Value" in the following commented code to avoid // Replace "-Value" by "1+~Value" in the following commented code to avoid
@ -667,6 +669,7 @@ inline uint64_t PowerOf2Floor(uint64_t A) {
/// alignTo(321, 255, 42) = 552 /// alignTo(321, 255, 42) = 552
/// \endcode /// \endcode
inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align; Skew %= Align;
return (Value + Align - 1 - Skew) / Align * Align + Skew; return (Value + Align - 1 - Skew) / Align * Align + Skew;
} }
@ -674,6 +677,7 @@ inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
/// Returns the largest uint64_t less than or equal to \p Value and is /// Returns the largest uint64_t less than or equal to \p Value and is
/// \p Skew mod \p Align. \p Align must be non-zero /// \p Skew mod \p Align. \p Align must be non-zero
inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align; Skew %= Align;
return (Value - Skew) / Align * Align + Skew; return (Value - Skew) / Align * Align + Skew;
} }
@ -687,7 +691,7 @@ inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer. /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
/// Requires 0 < B <= 32. /// Requires 0 < B <= 32.
template <unsigned B> inline int32_t SignExtend32(uint32_t X) { template <unsigned B> LLVM_CONSTEXPR inline int32_t SignExtend32(uint32_t X) {
static_assert(B > 0, "Bit width can't be 0."); static_assert(B > 0, "Bit width can't be 0.");
static_assert(B <= 32, "Bit width out of range."); static_assert(B <= 32, "Bit width out of range.");
return int32_t(X << (32 - B)) >> (32 - B); return int32_t(X << (32 - B)) >> (32 - B);
@ -703,7 +707,7 @@ inline int32_t SignExtend32(uint32_t X, unsigned B) {
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer. /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
/// Requires 0 < B < 64. /// Requires 0 < B < 64.
template <unsigned B> inline int64_t SignExtend64(uint64_t x) { template <unsigned B> LLVM_CONSTEXPR inline int64_t SignExtend64(uint64_t x) {
static_assert(B > 0, "Bit width can't be 0."); static_assert(B > 0, "Bit width can't be 0.");
static_assert(B <= 64, "Bit width out of range."); static_assert(B <= 64, "Bit width out of range.");
return int64_t(x << (64 - B)) >> (64 - B); return int64_t(x << (64 - B)) >> (64 - B);