Revert r204076 for now - it caused significant regressions in a number of

benchmarks.

<rdar://problem/16368461>



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204558 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Lang Hames 2014-03-23 04:22:31 +00:00
parent 0695b20d9a
commit fb51aac129
3 changed files with 82 additions and 104 deletions

View File

@ -1588,16 +1588,18 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
return false;
}
/// TryToAddRangeMetadata - At this point, we have learned that the only
/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
/// two values ever stored into GV are its initializer and OtherVal. See if we
/// can annotate loads from it with range metadata describing this.
/// This exposes the values to other scalar optimizations.
static bool TryToAddRangeMetadata(GlobalVariable *GV, Constant *OtherVal) {
/// can shrink the global into a boolean and select between the two values
/// whenever it is used. This exposes the values to other scalar optimizations.
static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
Type *GVElType = GV->getType()->getElementType();
// If GVElType is already i1, it already has a minimal range. If the type of
// the GV is an FP value, pointer or vector, don't do this optimization
// because range metadata is currently only supported on scalar integers.
// If GVElType is already i1, it is already shrunk. If the type of the GV is
// an FP value, pointer or vector, don't do this optimization because a select
// between them is very expensive and unlikely to lead to later
// simplification. In these cases, we typically end up with "cond ? v1 : v2"
// where v1 and v2 both require constant pool loads, a big loss.
if (GVElType == Type::getInt1Ty(GV->getContext()) ||
GVElType->isFloatingPointTy() ||
GVElType->isPointerTy() || GVElType->isVectorTy())
@ -1609,53 +1611,81 @@ static bool TryToAddRangeMetadata(GlobalVariable *GV, Constant *OtherVal) {
if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
return false;
DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV);
// Create the new global, initializing it to false.
GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
false,
GlobalValue::InternalLinkage,
ConstantInt::getFalse(GV->getContext()),
GV->getName()+".b",
GV->getThreadLocalMode(),
GV->getType()->getAddressSpace());
GV->getParent()->getGlobalList().insert(GV, NewGV);
Constant *InitVal = GV->getInitializer();
assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
"No reason to add range metadata!");
"No reason to shrink to bool!");
// The MD_range metadata only supports absolute integer constants.
if (!isa<ConstantInt>(InitVal) || !isa<ConstantInt>(OtherVal))
return false;
// If initialized to zero and storing one into the global, we can use a cast
// instead of a select to synthesize the desired value.
bool IsOneZero = false;
if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
IsOneZero = InitVal->isNullValue() && CI->isOne();
DEBUG(dbgs() << " *** ADDING RANGE METADATA: " << *GV);
for (User *U : GV->users()) {
Instruction *UI = cast<Instruction>(U);
if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
// If we already have a range, don't add a new one, so that GlobalOpt
// terminates. In theory, we could merge the two ranges.
if (LI->getMetadata(LLVMContext::MD_range))
return false;
// Add range metadata to the load. Range metadata can represent multiple
// ranges, but they must be discontiguous, so we have two cases: the case
// where the values are adjacent, in which case we add one range, and the
// case where they're not, in which case we add two.
APInt Min = cast<ConstantInt>(InitVal)->getValue();
APInt Max = cast<ConstantInt>(OtherVal)->getValue();
if (Max.slt(Min))
std::swap(Min, Max);
APInt Min1 = Min + 1;
APInt Max1 = Max + 1;
if (Min1 == Max) {
Value *Vals[] = {
ConstantInt::get(GV->getContext(), Min),
ConstantInt::get(GV->getContext(), Max1),
};
MDNode *MD = MDNode::get(LI->getContext(), Vals);
LI->setMetadata(LLVMContext::MD_range, MD);
while (!GV->use_empty()) {
Instruction *UI = cast<Instruction>(GV->user_back());
if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
// Change the store into a boolean store.
bool StoringOther = SI->getOperand(0) == OtherVal;
// Only do this if we weren't storing a loaded value.
Value *StoreVal;
if (StoringOther || SI->getOperand(0) == InitVal) {
StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
StoringOther);
} else {
Value *Vals[] = {
ConstantInt::get(GV->getContext(), Min),
ConstantInt::get(GV->getContext(), Min1),
ConstantInt::get(GV->getContext(), Max),
ConstantInt::get(GV->getContext(), Max1),
};
MDNode *MD = MDNode::get(LI->getContext(), Vals);
LI->setMetadata(LLVMContext::MD_range, MD);
// Otherwise, we are storing a previously loaded copy. To do this,
// change the copy from copying the original value to just copying the
// bool.
Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
// If we've already replaced the input, StoredVal will be a cast or
// select instruction. If not, it will be a load of the original
// global.
if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
assert(LI->getOperand(0) == GV && "Not a copy!");
// Insert a new load, to preserve the saved value.
StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
LI->getOrdering(), LI->getSynchScope(), LI);
} else {
assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
"This is not a form that we understand!");
StoreVal = StoredVal->getOperand(0);
assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
}
}
new StoreInst(StoreVal, NewGV, false, 0,
SI->getOrdering(), SI->getSynchScope(), SI);
} else {
// Change the load into a load of bool then a select.
LoadInst *LI = cast<LoadInst>(UI);
LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
LI->getOrdering(), LI->getSynchScope(), LI);
Value *NSI;
if (IsOneZero)
NSI = new ZExtInst(NLI, LI->getType(), "", LI);
else
NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
NSI->takeName(LI);
LI->replaceAllUsesWith(NSI);
}
UI->eraseFromParent();
}
// Retain the name of the old global variable. People who are debugging their
// programs may expect these variables to be named the same.
NewGV->takeName(GV);
GV->eraseFromParent();
return true;
}
@ -1809,10 +1839,11 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
DL, TLI))
return true;
// Otherwise, if the global was not a boolean, we can add range metadata.
// Otherwise, if the global was not a boolean, we can shrink it to be a
// boolean.
if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
if (GS.Ordering == NotAtomic) {
if (TryToAddRangeMetadata(GV, SOVConstant)) {
if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
++NumShrunkToBool;
return true;
}

View File

@ -1,21 +1,20 @@
; RUN: opt < %s -S -globalopt -instcombine | FileCheck %s
;; check that global opt annotates loads from global variales that only hold 0 or 1
;; such that instcombine can optimize accordingly.
;; check that global opt turns integers that only hold 0 or 1 into bools.
@G = internal addrspace(1) global i32 0
; CHECK: @G
; CHECK: addrspace(1)
; CHECK: global i32 0
; CHECK: global i1 false
define void @set1() {
store i32 0, i32 addrspace(1)* @G
; CHECK: store i32 0
; CHECK: store i1 false
ret void
}
define void @set2() {
store i32 1, i32 addrspace(1)* @G
; CHECK: store i32 1
; CHECK: store i1 true
ret void
}

View File

@ -1,52 +0,0 @@
; RUN: opt < %s -S -globalopt | FileCheck %s
;; check that global opt annotates loads from global variales that have
;; constant values stored to them.
@G = internal global i32 5
@H = internal global i32 7
@I = internal global i32 17
@J = internal global i32 29
@K = internal global i32 31
define void @set() {
store i32 6, i32* @G
store i32 13, i32* @H
store i32 16, i32* @I
store i32 29, i32* @J
store i32 -37, i32* @K
ret void
}
define i32 @getG() {
; CHECK: %t = load i32* @G, !range [[G:![0-9]+]]
%t = load i32* @G
ret i32 %t
}
define i32 @getH() {
; CHECK: %t = load i32* @H, !range [[H:![0-9]+]]
%t = load i32* @H
ret i32 %t
}
define i32 @getI() {
; CHECK: %t = load i32* @I, !range [[I:![0-9]+]]
%t = load i32* @I
ret i32 %t
}
define i32 @getJ() {
; CHECK: ret i32 29
%t = load i32* @J
ret i32 %t
}
define i32 @getK() {
; CHECK: %t = load i32* @K, !range [[K:![0-9]+]]
%t = load i32* @K
ret i32 %t
}
; CHECK: [[G]] = metadata !{i32 5, i32 7}
; CHECK: [[H]] = metadata !{i32 7, i32 8, i32 13, i32 14}
; CHECK: [[I]] = metadata !{i32 16, i32 18}
; CHECK: [[K]] = metadata !{i32 -37, i32 -36, i32 31, i32 32}