Assert that we have all use/users in the getters.

An error that is pretty easy to make is to use the lazy bitcode reader
and then do something like

if (V.use_empty())

The problem is that uses in unmaterialized functions are not accounted
for.

This patch adds asserts that all uses are known.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@256105 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Rafael Espindola 2015-12-19 20:03:23 +00:00
parent 25b4ccf2a6
commit fdb838f3f8
7 changed files with 96 additions and 23 deletions

View File

@ -439,6 +439,7 @@ public:
void setMaterializer(GVMaterializer *GVM);
/// Retrieves the GVMaterializer, if any, for this Module.
GVMaterializer *getMaterializer() const { return Materializer.get(); }
bool isMaterialized() const { return !getMaterializer(); }
/// Make sure the GlobalValue is fully read. If the module is corrupt, this
/// returns true and fills in the optional string with information about the
@ -446,7 +447,6 @@ public:
std::error_code materialize(GlobalValue *GV);
/// Make sure all GlobalValues in this Module are fully read and clear the
/// Materializer. If the module is corrupt, this DOES NOT clear the old
/// Materializer.
std::error_code materializeAll();

View File

@ -273,38 +273,91 @@ public:
//----------------------------------------------------------------------
// Methods for handling the chain of uses of this Value.
//
bool use_empty() const { return UseList == nullptr; }
// Materializing a function can introduce new uses, so these methods come in
// two variants:
// The methods that start with materialized_ check the uses that are
// currently known given which functions are materialized. Be very careful
// when using them since you might not get all uses.
// The methods that don't start with materialized_ assert that modules is
// fully materialized.
#ifdef NDEBUG
void assertModuleIsMaterialized() const {}
#else
void assertModuleIsMaterialized() const;
#endif
bool use_empty() const {
assertModuleIsMaterialized();
return UseList == nullptr;
}
typedef use_iterator_impl<Use> use_iterator;
typedef use_iterator_impl<const Use> const_use_iterator;
use_iterator use_begin() { return use_iterator(UseList); }
const_use_iterator use_begin() const { return const_use_iterator(UseList); }
use_iterator materialized_use_begin() { return use_iterator(UseList); }
const_use_iterator materialized_use_begin() const {
return const_use_iterator(UseList);
}
use_iterator use_begin() {
assertModuleIsMaterialized();
return materialized_use_begin();
}
const_use_iterator use_begin() const {
assertModuleIsMaterialized();
return materialized_use_begin();
}
use_iterator use_end() { return use_iterator(); }
const_use_iterator use_end() const { return const_use_iterator(); }
iterator_range<use_iterator> materialized_uses() {
return make_range(materialized_use_begin(), use_end());
}
iterator_range<const_use_iterator> materialized_uses() const {
return make_range(materialized_use_begin(), use_end());
}
iterator_range<use_iterator> uses() {
return make_range(use_begin(), use_end());
assertModuleIsMaterialized();
return materialized_uses();
}
iterator_range<const_use_iterator> uses() const {
return make_range(use_begin(), use_end());
assertModuleIsMaterialized();
return materialized_uses();
}
bool user_empty() const { return UseList == nullptr; }
bool user_empty() const {
assertModuleIsMaterialized();
return UseList == nullptr;
}
typedef user_iterator_impl<User> user_iterator;
typedef user_iterator_impl<const User> const_user_iterator;
user_iterator user_begin() { return user_iterator(UseList); }
const_user_iterator user_begin() const {
user_iterator materialized_user_begin() { return user_iterator(UseList); }
const_user_iterator materialized_user_begin() const {
return const_user_iterator(UseList);
}
user_iterator user_begin() {
assertModuleIsMaterialized();
return materialized_user_begin();
}
const_user_iterator user_begin() const {
assertModuleIsMaterialized();
return materialized_user_begin();
}
user_iterator user_end() { return user_iterator(); }
const_user_iterator user_end() const { return const_user_iterator(); }
User *user_back() { return *user_begin(); }
const User *user_back() const { return *user_begin(); }
User *user_back() {
assertModuleIsMaterialized();
return *materialized_user_begin();
}
const User *user_back() const {
assertModuleIsMaterialized();
return *materialized_user_begin();
}
iterator_range<user_iterator> users() {
return make_range(user_begin(), user_end());
assertModuleIsMaterialized();
return make_range(materialized_user_begin(), user_end());
}
iterator_range<const_user_iterator> users() const {
return make_range(user_begin(), user_end());
assertModuleIsMaterialized();
return make_range(materialized_user_begin(), user_end());
}
/// \brief Return true if there is exactly one user of this value.

View File

@ -3028,7 +3028,7 @@ std::error_code BitcodeReader::parseUseLists() {
V = ValueList[ID];
unsigned NumUses = 0;
SmallDenseMap<const Use *, unsigned, 16> Order;
for (const Use &U : V->uses()) {
for (const Use &U : V->materialized_uses()) {
if (++NumUses > Record.size())
break;
Order[&U] = Record[NumUses - 1];
@ -5266,7 +5266,8 @@ std::error_code BitcodeReader::materialize(GlobalValue *GV) {
// Upgrade any old intrinsic calls in the function.
for (auto &I : UpgradedIntrinsics) {
for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) {
for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
UI != UE;) {
User *U = *UI;
++UI;
if (CallInst *CI = dyn_cast<CallInst>(U))

View File

@ -394,10 +394,8 @@ std::error_code Module::materialize(GlobalValue *GV) {
std::error_code Module::materializeAll() {
if (!Materializer)
return std::error_code();
if (std::error_code EC = Materializer->materializeModule())
return EC;
Materializer.reset();
return std::error_code();
std::unique_ptr<GVMaterializer> M = std::move(Materializer);
return M->materializeModule();
}
std::error_code Module::materializeMetadata() {

View File

@ -314,6 +314,16 @@ void Value::takeName(Value *V) {
}
#ifndef NDEBUG
void Value::assertModuleIsMaterialized() const {
const GlobalValue *GV = dyn_cast<GlobalValue>(this);
if (!GV)
return;
const Module *M = GV->getParent();
if (!M)
return;
assert(M->isMaterialized());
}
static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
Constant *C) {
if (!Cache.insert(Expr).second)

View File

@ -1831,7 +1831,9 @@ void Verifier::visitFunction(const Function &F) {
// If this function is actually an intrinsic, verify that it is only used in
// direct call/invokes, never having its "address taken".
if (F.getIntrinsicID()) {
// Only do this if the module is materialized, otherwise we don't have all the
// uses.
if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
const User *U;
if (F.hasAddressTaken(&U))
Assert(0, "Invalid user of intrinsic instruction!", U);

View File

@ -242,13 +242,22 @@ int main(int argc, char **argv) {
}
}
{
std::vector<GlobalValue *> Gvs(GVs.begin(), GVs.end());
legacy::PassManager Extract;
Extract.add(createGVExtractionPass(Gvs, DeleteFn));
Extract.run(*M);
// Now that we have all the GVs we want, mark the module as fully
// materialized.
// FIXME: should the GVExtractionPass handle this?
M->materializeAll();
}
// In addition to deleting all other functions, we also want to spiff it
// up a little bit. Do this now.
legacy::PassManager Passes;
std::vector<GlobalValue*> Gvs(GVs.begin(), GVs.end());
Passes.add(createGVExtractionPass(Gvs, DeleteFn));
if (!DeleteFn)
Passes.add(createGlobalDCEPass()); // Delete unreachable globals
Passes.add(createStripDeadDebugInfoPass()); // Remove dead debug info