mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-29 14:40:25 +00:00
Fix a layering violation: hasConstantValue, which is part of the PHINode
class, uses DominatorTree which is an analysis. This change moves all of the tricky hasConstantValue logic to SimplifyInstruction, and replaces it with a very simple literal implementation. I already taught users of hasConstantValue that need tricky stuff to use SimplifyInstruction instead. I didn't update InlineFunction because the IR looks like it might be in a funky state at the point it calls hasConstantValue, which makes calling SimplifyInstruction dangerous since it can in theory do a lot of tricky reasoning. This may be a pessimization, for example in the case where all phi node operands are either undef or a fixed constant. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119459 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
a0c5244e85
commit
ff10341183
@ -29,7 +29,6 @@ class ConstantInt;
|
||||
class ConstantRange;
|
||||
class APInt;
|
||||
class LLVMContext;
|
||||
class DominatorTree;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// AllocaInst Class
|
||||
@ -1946,13 +1945,7 @@ public:
|
||||
|
||||
/// hasConstantValue - If the specified PHI node always merges together the
|
||||
/// same value, return the value, otherwise return null.
|
||||
///
|
||||
/// If the PHI has undef operands, but all the rest of the operands are
|
||||
/// some unique value, return that value if it can be proved that the
|
||||
/// value dominates the PHI. If DT is null, use a conservative check,
|
||||
/// otherwise use DT to test for dominance.
|
||||
///
|
||||
Value *hasConstantValue(const DominatorTree *DT = 0) const;
|
||||
Value *hasConstantValue() const;
|
||||
|
||||
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
||||
static inline bool classof(const PHINode *) { return true; }
|
||||
|
@ -173,7 +173,7 @@ static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
|
||||
Value *CommonValue = 0;
|
||||
for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
|
||||
Value *Incoming = PI->getIncomingValue(i);
|
||||
// If the incoming value is the phi node itself, it can be safely skipped.
|
||||
// If the incoming value is the phi node itself, it can safely be skipped.
|
||||
if (Incoming == PI) continue;
|
||||
Value *V = PI == LHS ?
|
||||
SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
|
||||
@ -211,7 +211,7 @@ static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
|
||||
Value *CommonValue = 0;
|
||||
for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
|
||||
Value *Incoming = PI->getIncomingValue(i);
|
||||
// If the incoming value is the phi node itself, it can be safely skipped.
|
||||
// If the incoming value is the phi node itself, it can safely be skipped.
|
||||
if (Incoming == PI) continue;
|
||||
Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
|
||||
// If the operation failed to simplify, or simplified to a different value
|
||||
@ -663,6 +663,40 @@ Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
|
||||
(Constant *const*)Ops+1, NumOps-1);
|
||||
}
|
||||
|
||||
/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
|
||||
static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
|
||||
// If all of the PHI's incoming values are the same then replace the PHI node
|
||||
// with the common value.
|
||||
Value *CommonValue = 0;
|
||||
bool HasUndefInput = false;
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
||||
Value *Incoming = PN->getIncomingValue(i);
|
||||
// If the incoming value is the phi node itself, it can safely be skipped.
|
||||
if (Incoming == PN) continue;
|
||||
if (isa<UndefValue>(Incoming)) {
|
||||
// Remember that we saw an undef value, but otherwise ignore them.
|
||||
HasUndefInput = true;
|
||||
continue;
|
||||
}
|
||||
if (CommonValue && Incoming != CommonValue)
|
||||
return 0; // Not the same, bail out.
|
||||
CommonValue = Incoming;
|
||||
}
|
||||
|
||||
// If CommonValue is null then all of the incoming values were either undef or
|
||||
// equal to the phi node itself.
|
||||
if (!CommonValue)
|
||||
return UndefValue::get(PN->getType());
|
||||
|
||||
// If we have a PHI node like phi(X, undef, X), where X is defined by some
|
||||
// instruction, we cannot return X as the result of the PHI node unless it
|
||||
// dominates the PHI block.
|
||||
if (HasUndefInput)
|
||||
return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
|
||||
|
||||
return CommonValue;
|
||||
}
|
||||
|
||||
|
||||
//=== Helper functions for higher up the class hierarchy.
|
||||
|
||||
@ -748,7 +782,7 @@ Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
|
||||
return SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
|
||||
}
|
||||
case Instruction::PHI:
|
||||
return cast<PHINode>(I)->hasConstantValue(DT);
|
||||
return SimplifyPHINode(cast<PHINode>(I), DT);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -582,7 +582,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
|
||||
BBI = BB->end();
|
||||
}
|
||||
} else if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
||||
if (Value *W = PN->hasConstantValue(DT))
|
||||
if (Value *W = PN->hasConstantValue())
|
||||
return findValueImpl(W, OffsetOk, Visited);
|
||||
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
|
||||
if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
|
||||
@ -615,7 +615,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
|
||||
|
||||
// As a last resort, try SimplifyInstruction or constant folding.
|
||||
if (Instruction *Inst = dyn_cast<Instruction>(V)) {
|
||||
if (Value *W = SimplifyInstruction(Inst, TD))
|
||||
if (Value *W = SimplifyInstruction(Inst, TD, DT))
|
||||
if (W != Inst)
|
||||
return findValueImpl(W, OffsetOk, Visited);
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
||||
|
@ -19,7 +19,6 @@
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Operator.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/CallSite.h"
|
||||
#include "llvm/Support/ConstantRange.h"
|
||||
@ -164,61 +163,13 @@ void PHINode::resizeOperands(unsigned NumOps) {
|
||||
|
||||
/// hasConstantValue - If the specified PHI node always merges together the same
|
||||
/// value, return the value, otherwise return null.
|
||||
///
|
||||
/// If the PHI has undef operands, but all the rest of the operands are
|
||||
/// some unique value, return that value if it can be proved that the
|
||||
/// value dominates the PHI. If DT is null, use a conservative check,
|
||||
/// otherwise use DT to test for dominance.
|
||||
///
|
||||
Value *PHINode::hasConstantValue(const DominatorTree *DT) const {
|
||||
// If the PHI node only has one incoming value, eliminate the PHI node.
|
||||
if (getNumIncomingValues() == 1) {
|
||||
if (getIncomingValue(0) != this) // not X = phi X
|
||||
return getIncomingValue(0);
|
||||
return UndefValue::get(getType()); // Self cycle is dead.
|
||||
}
|
||||
|
||||
// Otherwise if all of the incoming values are the same for the PHI, replace
|
||||
// the PHI node with the incoming value.
|
||||
//
|
||||
Value *InVal = 0;
|
||||
bool HasUndefInput = false;
|
||||
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
|
||||
if (isa<UndefValue>(getIncomingValue(i))) {
|
||||
HasUndefInput = true;
|
||||
} else if (getIncomingValue(i) != this) { // Not the PHI node itself...
|
||||
if (InVal && getIncomingValue(i) != InVal)
|
||||
return 0; // Not the same, bail out.
|
||||
InVal = getIncomingValue(i);
|
||||
}
|
||||
|
||||
// The only case that could cause InVal to be null is if we have a PHI node
|
||||
// that only has entries for itself. In this case, there is no entry into the
|
||||
// loop, so kill the PHI.
|
||||
//
|
||||
if (InVal == 0) InVal = UndefValue::get(getType());
|
||||
|
||||
// If we have a PHI node like phi(X, undef, X), where X is defined by some
|
||||
// instruction, we cannot always return X as the result of the PHI node. Only
|
||||
// do this if X is not an instruction (thus it must dominate the PHI block),
|
||||
// or if the client is prepared to deal with this possibility.
|
||||
if (!HasUndefInput || !isa<Instruction>(InVal))
|
||||
return InVal;
|
||||
|
||||
Instruction *IV = cast<Instruction>(InVal);
|
||||
if (DT) {
|
||||
// We have a DominatorTree. Do a precise test.
|
||||
if (!DT->dominates(IV, this))
|
||||
return 0;
|
||||
} else {
|
||||
// If it is in the entry block, it obviously dominates everything.
|
||||
if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
|
||||
isa<InvokeInst>(IV))
|
||||
return 0; // Cannot guarantee that InVal dominates this PHINode.
|
||||
}
|
||||
|
||||
// All of the incoming values are the same, return the value now.
|
||||
return InVal;
|
||||
Value *PHINode::hasConstantValue() const {
|
||||
// Exploit the fact that phi nodes always have at least one entry.
|
||||
Value *ConstantValue = getIncomingValue(0);
|
||||
for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
|
||||
if (getIncomingValue(i) != ConstantValue)
|
||||
return 0; // Incoming values not all the same.
|
||||
return ConstantValue;
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user