Fix bugs in FITOS/D instruction generation.

The space for optional args in the stack frame is now being computed,
so finish the code generation for the variable `alloca'.
Finally, made a major overhaul of how stack frame is managed.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1194 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2001-11-08 05:04:09 +00:00
parent b9c3863e08
commit ff5a09ee44

View File

@ -139,11 +139,11 @@ ChooseBFpccInstruction(const InstructionNode* instrNode,
// For now, hack this using a little static cache of TmpInstructions.
// Eventually the entire BURG instruction selection should be put
// into a separate class that can hold such information.
// The static cache is not too bad because that memory for these
// TmpInstructions will be freed elsewhere in any case.
// The static cache is not too bad because the memory for these
// TmpInstructions will be freed along with the rest of the Method anyway.
//
static TmpInstruction*
GetTmpForCC(Value* boolVal, const Method* method)
GetTmpForCC(Value* boolVal, const Method* method, const Type* ccType)
{
typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
@ -157,11 +157,11 @@ GetTmpForCC(Value* boolVal, const Method* method)
boolToTmpCache.clear();
}
// Look for tmpI and create a new one otherswise.
// new value is directly written to map using
// Look for tmpI and create a new one otherwise. The new value is
// directly written to map using the ref returned by operator[].
TmpInstruction*& tmpI = boolToTmpCache[boolVal];
if (tmpI == NULL)
tmpI = new TmpInstruction(TMP_INSTRUCTION_OPCODE, boolVal, NULL);
tmpI = new TmpInstruction(TMP_INSTRUCTION_OPCODE, ccType, boolVal, NULL);
return tmpI;
}
@ -259,9 +259,12 @@ ChooseConvertToFloatInstr(const InstructionNode* instrNode,
break;
case ToDoubleTy:
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
opCode = FITOD;
else if (opType == Type::LongTy)
// Use FXTOD for all integer-to-double conversions. This has to be
// consistent with the code in CreateCodeToCopyIntToFloat() since
// that will be used to load the integer into an FP register.
//
if (opType == Type::SByteTy || opType == Type::ShortTy ||
opType == Type::IntTy || opType == Type::LongTy)
opCode = FXTOD;
else if (opType == Type::FloatTy)
opCode = FSTOD;
@ -1033,13 +1036,22 @@ GetInstructionsForProlog(BasicBlock* entryBB,
{
int64_t s0=0; // used to avoid overloading ambiguity below
const MachineFrameInfo& frameInfo = target.getFrameInfo();
// The second operand is the stack size. If it does not fit in the
// immediate field, we either have to find an unused register in the
// caller's window or move some elements to the dynamically allocated
// area of the stack frame (just above save area and method args).
Method* method = entryBB->getParent();
MachineCodeForMethod& mcodeInfo = method->getMachineCode();
unsigned int staticStackSize = mcodeInfo.getStaticStackSize();
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method);
unsigned int staticStackSize = mcInfo.getStaticStackSize();
if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize())
staticStackSize = (unsigned) frameInfo.getMinStackFrameSize();
if (unsigned padsz = (staticStackSize %
(unsigned) frameInfo.getStackFrameSizeAlignment()))
staticStackSize += padsz;
assert(target.getInstrInfo().constantFitsInImmedField(SAVE, staticStackSize)
&& "Stack size too large for immediate field of SAVE instruction. Need additional work as described in the comment above");
@ -1047,7 +1059,7 @@ GetInstructionsForProlog(BasicBlock* entryBB,
mvec[0] = new MachineInstr(SAVE);
mvec[0]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
- staticStackSize);
- (int) staticStackSize);
mvec[0]->SetMachineOperand(2, target.getRegInfo().getStackPointer());
return 1;
@ -1122,7 +1134,7 @@ unsigned
GetInstructionsByRule(InstructionNode* subtreeRoot,
int ruleForNode,
short* nts,
TargetMachine &tgt,
TargetMachine &target,
MachineInstr** mvec)
{
int numInstr = 1; // initialize for common case
@ -1134,8 +1146,6 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
int64_t s0=0, s8=8; // variables holding constants to avoid
uint64_t u0=0; // overloading ambiguities below
UltraSparc& target = (UltraSparc&) tgt;
for (unsigned i=0; i < MAX_INSTR_PER_VMINSTR; i++)
mvec[i] = NULL;
@ -1266,9 +1276,9 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
isFPBranch));
Value* ccValue = isFPBranch? subtreeRoot->leftChild()->getValue()
: GetTmpForCC(subtreeRoot->leftChild()->getValue(),
brInst->getParent()->getParent());
Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
brInst->getParent()->getParent(),
isFPBranch? Type::FloatTy : Type::IntTy);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, ccValue);
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
@ -1343,7 +1353,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
assert(0 && "VRegList should never be the topmost non-chain rule");
break;
case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
case 21: // bool: Not(bool): Both these are implemented as:
case 321: // reg: BNot(reg) : reg = reg XOR-NOT 0
mvec[0] = new MachineInstr(XNOR);
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
subtreeRoot->leftChild()->getValue());
@ -1408,7 +1419,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
}
else
{
opType = subtreeRoot->leftChild()->getValue()->getType();
leftVal = subtreeRoot->leftChild()->getValue();
opType = leftVal->getType();
MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
if (opCode == INVALID_OPCODE) // no conversion needed
{
@ -1417,8 +1429,42 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
}
else
{
mvec[0] = new MachineInstr(opCode);
Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
// If the source operand is a non-FP type it must be
// first copied from int to float register via memory!
Instruction *dest = subtreeRoot->getInstruction();
Value* srcForCast;
int n = 0;
if (opType != Type::FloatTy && opType != Type::DoubleTy)
{
// Create a temporary to represent the FP register
// into which the integer will be copied via memory.
srcForCast = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
dest, NULL);
dest->getMachineInstrVec().addTempValue(srcForCast);
vector<MachineInstr*> minstrVec;
vector<TmpInstruction*> tempVec;
target.getInstrInfo().CreateCodeToCopyIntToFloat(
dest->getParent()->getParent(),
leftVal, (TmpInstruction*) srcForCast,
minstrVec, tempVec, target);
for (unsigned i=0; i < minstrVec.size(); ++i)
mvec[n++] = minstrVec[i];
for (unsigned i=0; i < tempVec.size(); ++i)
dest->getMachineInstrVec().addTempValue(tempVec[i]);
}
else
srcForCast = leftVal;
MachineInstr* castI = new MachineInstr(opCode);
castI->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
srcForCast);
castI->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
dest);
mvec[n++] = castI;
numInstr = n;
}
}
break;
@ -1528,35 +1574,44 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
break;
}
case 38: // reg: And(reg, reg)
case 238: // reg: And(reg, Constant)
case 38: // bool: And(bool, bool)
case 238: // bool: And(bool, boolconst)
case 338: // reg : BAnd(reg, reg)
case 538: // reg : BAnd(reg, Constant)
mvec[0] = new MachineInstr(AND);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 138: // reg: And(reg, not)
case 138: // bool: And(bool, not)
case 438: // bool: BAnd(bool, not)
mvec[0] = new MachineInstr(ANDN);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 39: // reg: Or(reg, reg)
case 239: // reg: Or(reg, Constant)
case 39: // bool: Or(bool, bool)
case 239: // bool: Or(bool, boolconst)
case 339: // reg : BOr(reg, reg)
case 539: // reg : BOr(reg, Constant)
mvec[0] = new MachineInstr(ORN);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 139: // reg: Or(reg, not)
case 139: // bool: Or(bool, not)
case 439: // bool: BOr(bool, not)
mvec[0] = new MachineInstr(ORN);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 40: // reg: Xor(reg, reg)
case 240: // reg: Xor(reg, Constant)
case 40: // bool: Xor(bool, bool)
case 240: // bool: Xor(bool, boolconst)
case 340: // reg : BXor(reg, reg)
case 540: // reg : BXor(reg, Constant)
mvec[0] = new MachineInstr(XOR);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
case 140: // reg: Xor(reg, not)
case 140: // bool: Xor(bool, not)
case 440: // bool: BXor(bool, not)
mvec[0] = new MachineInstr(XNOR);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
break;
@ -1617,10 +1672,28 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
bool mustClearReg;
int valueToMove;
MachineOpCode movOpCode = 0;
Value* ccValue = NULL;
// Mark the 4th operand as being a CC register, and as a def
// A TmpInstruction is created to represent the CC "result".
// Unlike other instances of TmpInstruction, this one is used
// by machine code of multiple LLVM instructions, viz.,
// the SetCC and the branch. Make sure to get the same one!
// Note that we do this even for FP CC registers even though they
// are explicit operands, because the type of the operand
// needs to be a floating point condition code, not an integer
// condition code. Think of this as casting the bool result to
// a FP condition code register.
//
leftVal = subtreeRoot->leftChild()->getValue();
bool isFPCompare = (leftVal->getType() == Type::FloatTy ||
leftVal->getType() == Type::DoubleTy);
if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
setCCInstr->getParent()->getParent(),
isFPCompare? Type::FloatTy : Type::IntTy);
setCCInstr->getMachineInstrVec().addTempValue(tmpForCC);
if (! isFPCompare)
{
// Integer condition: dest. should be %g0 or an integer register.
// If result must be saved but condition is not SetEQ then we need
@ -1630,16 +1703,6 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
mvec[0] = new MachineInstr(SUBcc);
Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
// Mark the 4th operand as being a CC register, and as a def
// A TmpInstruction is created to represent the int CC "result".
// Unlike other instances of TmpInstruction, this one is used by
// used by machine code of multiple LLVM instructions, viz.,
// the SetCC and the branch. Make sure to get the same one!
//
TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
setCCInstr->getParent()->getParent());
setCCInstr->getMachineInstrVec().addTempValue(tmpForCC);
mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
tmpForCC, /*def*/true);
@ -1647,7 +1710,6 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
{ // recompute bool using the integer condition codes
movOpCode =
ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
ccValue = tmpForCC;
}
}
else
@ -1655,7 +1717,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// FP condition: dest of FCMP should be some FCCn register
mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
setCCInstr);
tmpForCC);
mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
subtreeRoot->leftChild()->getValue());
mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
@ -1666,14 +1728,11 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
mustClearReg = true;
valueToMove = 1;
movOpCode = ChooseMovFpccInstruction(subtreeRoot);
ccValue = setCCInstr;
}
}
if (computeBoolVal)
{
assert(ccValue && "Inconsistent logic above and here");
if (mustClearReg)
{// Unconditionally set register to 0
int n = numInstr++;
@ -1688,7 +1747,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
int n = numInstr++;
mvec[n] = new MachineInstr(movOpCode);
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
ccValue);
tmpForCC);
mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
valueToMove);
mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
@ -1742,12 +1801,8 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
assert(tsize != 0 && "Just to check when this can happen");
Method* method = instr->getParent()->getParent();
MachineCodeForMethod& mcode = method->getMachineCode();
int offsetFromFP =
target.getFrameInfo().getFirstAutomaticVarOffsetFromFP(method)
- (tsize + mcode.getAutomaticVarsSize());
mcode.putLocalVarAtOffsetFromFP(instr, offsetFromFP, tsize);
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method);
int offsetFromFP = mcInfo.allocateLocalVar(target, instr);
// Create a temporary Value to hold the constant offset.
// This is needed because it may not fit in the immediate field.
@ -1782,17 +1837,10 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
// Create a temporary Value to hold the constant offset from SP
Method* method = instr->getParent()->getParent();
MachineCodeForMethod& mcode = method->getMachineCode();
int frameSizeBelowDynamicArea =
target.getFrameInfo().getFrameSizeBelowDynamicArea(method);
ConstPoolSInt* lowerAreaSizeVal = ConstPoolSInt::get(Type::IntTy,
frameSizeBelowDynamicArea);
cerr << "***" << endl
<< "*** Variable-size ALLOCA operation needs more work:" << endl
<< "*** We have to precompute the size of "
<< " optional arguments in the stack frame" << endl
<< "***" << endl;
assert(0 && "SEE MESSAGE ABOVE");
bool ignore; // we don't need this
ConstPoolSInt* dynamicAreaOffset = ConstPoolSInt::get(Type::IntTy,
target.getFrameInfo().getDynamicAreaOffset(MachineCodeForMethod::get(method),
ignore));
// Create a temporary value to hold `tmp'
Instruction* tmpInstr = new TmpInstruction(TMP_INSTRUCTION_OPCODE,
@ -1822,7 +1870,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
mvec[2] = new MachineInstr(ADD);
mvec[2]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
mvec[2]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
lowerAreaSizeVal);
dynamicAreaOffset);
mvec[2]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,instr);
break;
}