Remove the README.txt entry regarding register allocation of CR logical ops,
and replace it with a FIXME in PPCInstrInfo.td. The text in the README.txt was
not really accurate, and thanks goes to Pat Haugen (and Bill Schmidt) from IBM
for clarifying what was intended and highlighting the relevant text in the ISA
specification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225325 91177308-0d34-0410-b5e6-96231b3b80d8
int->fp conversions on PPC must be done through memory loads and stores. On a
modern core, this process begins by storing the int value to memory, then
loading it using a (sometimes special) FP load instruction. Unfortunately, we
would do this even when the value to be converted was itself a load, and we can
just use that same memory location instead of copying it to another first.
There is a slight complication when handling int_to_fp(fp_to_int(x)) pairs,
because the fp_to_int operand has not been lowered when the int_to_fp is being
lowered. We handle this specially by invoking fp_to_int's lowering logic
(partially) and getting the necessary memory location (some trivial refactoring
was done to make this possible).
This is all somewhat ugly, and it would be nice if some later CodeGen stage
could just clean this stuff up, but because doing so would involve modifying
target-specific nodes (or instructions), it is not immediately clear how that
would work.
Also, remove a related entry from the README.txt for which we now generate
reasonable code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225301 91177308-0d34-0410-b5e6-96231b3b80d8
Because of how Clang represents structs as arrays (at least on non-Darwin
platforms), and what SROA does, etc. this is no longer a problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225251 91177308-0d34-0410-b5e6-96231b3b80d8
We no longer generate horrible code for the stated function:
void f(signed char *a, _Bool b, _Bool c) {
signed char t = 0;
if (b) t = *a;
if (c) *a = t;
}
for which we now generate:
.L.f:
andi. 5, 5, 1
cmpldi 1, 4, 0
li 5, 0
beq 1, .LBB0_2
lbz 5, 0(3)
.LBB0_2: # %if.end
bclr 4, 1, 0
stb 5, 0(3)
blr
so we don't need the README.txt entry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225217 91177308-0d34-0410-b5e6-96231b3b80d8
We now produce the desired code as noted in the README.txt file (no spurious
or). Remove the README entry and improve the regression test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225214 91177308-0d34-0410-b5e6-96231b3b80d8
We now produce the desired code as noted in the README.txt file. Remove the
README entry and add a regression test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225209 91177308-0d34-0410-b5e6-96231b3b80d8
We now produce the desired code as noted in the README.txt file. Remove the
README entry and add a regression test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225205 91177308-0d34-0410-b5e6-96231b3b80d8
Consider this function from our README.txt file:
int foo(int a, int b) { return (a < b) << 4; }
We now explicitly track CR bits by default, so the comment in the README.txt
about not really having a SETCC is no longer accurate, but we did generate this
somewhat silly code:
cmpw 0, 3, 4
li 3, 0
li 12, 1
isel 3, 12, 3, 0
sldi 3, 3, 4
blr
which generates the zext as a select between 0 and 1, and then shifts the
result by a constant amount. Here we preprocess the DAG in order to fold the
results of operations on an extension of an i1 value into the SELECT_I[48]
pseudo instruction when the resulting constant can be materialized using one
instruction (just like the 0 and 1). This was not implemented as a DAGCombine
because the resulting code would have been anti-canonical and depends on
replacing chained user nodes, which does not fit well into the lowering
paradigm. Now we generate:
cmpw 0, 3, 4
li 3, 0
li 12, 16
isel 3, 12, 3, 0
blr
which is less silly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225203 91177308-0d34-0410-b5e6-96231b3b80d8
r225135 added the ability to materialize i64 constants using rotations in order
to reduce the instruction count. Sometimes we can use a rotation only with some
extra masking, so that we take advantage of the fact that generating a bunch of
extra higher-order 1 bits is easy using li/lis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225147 91177308-0d34-0410-b5e6-96231b3b80d8
Materializing full 64-bit constants on PPC64 can be expensive, requiring up to
5 instructions depending on the locations of the non-zero bits. Sometimes
materializing a rotated constant, and then applying the inverse rotation, requires
fewer instructions than the direct method. If so, do that instead.
In r225132, I added support for forming constants using bit inversion. In
effect, this reverts that commit and replaces it with rotation support. The bit
inversion is useful for turning constants that are mostly ones into ones that
are mostly zeros (thus enabling a more-efficient shift-based materialization),
but the same effect can be obtained by using negative constants and a rotate,
and that is at least as efficient, if not more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225135 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC backend, somewhat embarrassingly, did not generate an
optimal-length sequence of instructions for a 32-bit bswap. While adding a
pattern for the bswap intrinsic to fix this would not have been terribly
difficult, doing so would not have addressed the real problem: we had been
generating poor code for many bit-permuting operations (by which I mean things
like byte-swap that permute the bits of one or more inputs around in various
ways). Here are some initial steps toward solving this deficiency.
Bit-permuting operations are represented, at the SDAG level, using ISD::ROTL,
SHL, SRL, AND and OR (mostly with constant second operands). Looking back
through these operations, we can build up a description of the bits in the
resulting value in terms of bits of one or more input values (and constant
zeros). For each bit, we compute the rotation amount from the original value,
and then group consecutive (value, rotation factor) bits into groups. Groups
sharing these attributes are then collected and sorted, and we can then
instruction select the entire permutation using a combination of masked
rotations (rlwinm), imm ands (andi/andis), and masked rotation inserts
(rlwimi).
The result is that instead of lowering an i32 bswap as:
rlwinm 5, 3, 24, 16, 23
rlwinm 4, 3, 24, 0, 7
rlwimi 4, 3, 8, 8, 15
rlwimi 5, 3, 8, 24, 31
rlwimi 4, 5, 0, 16, 31
we now produce:
rlwinm 4, 3, 8, 0, 31
rlwimi 4, 3, 24, 16, 23
rlwimi 4, 3, 24, 0, 7
and for the 'test6' example in the PowerPC/README.txt file:
unsigned test6(unsigned x) {
return ((x & 0x00FF0000) >> 16) | ((x & 0x000000FF) << 16);
}
we used to produce:
lis 4, 255
rlwinm 3, 3, 16, 0, 31
ori 4, 4, 255
and 3, 3, 4
and now we produce:
rlwinm 4, 3, 16, 24, 31
rlwimi 4, 3, 16, 8, 15
and, as a nice bonus, this fixes the FIXME in
test/CodeGen/PowerPC/rlwimi-and.ll.
This commit does not include instruction-selection for i64 operations, those
will come later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224318 91177308-0d34-0410-b5e6-96231b3b80d8
If we have an add (or an or that is really an add), where one operand is a
FrameIndex and the other operand is a small constant, we can combine the
lowering of the FrameIndex (which is lowered as an add of the FI and a zero
offset) with the constant operand.
Amusingly, this is an old potential improvement entry from
lib/Target/PowerPC/README.txt which had never been resolved. In short, we used
to lower:
%X = alloca { i32, i32 }
%Y = getelementptr {i32,i32}* %X, i32 0, i32 1
ret i32* %Y
as:
addi 3, 1, -8
ori 3, 3, 4
blr
and now we produce:
addi 3, 1, -4
blr
which is much more sensible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224071 91177308-0d34-0410-b5e6-96231b3b80d8
PowerPC has a conditional branch to the link register (return) instruction: BCLR.
This should be used any time when we'd otherwise have a conditional branch to a
return. This adds a small pass, PPCEarlyReturn, which runs just prior to the
branch selection pass (and, importantly, after block placement) to generate
these conditional returns when possible. It will also eliminate unconditional
branches to returns (these happen rarely; most of the time these have already
been tail duplicated by the time PPCEarlyReturn is invoked). This is a nice
optimization for small functions that do not maintain a stack frame.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179026 91177308-0d34-0410-b5e6-96231b3b80d8
As Chris points out, this can now be removed!
TODO: check if the associated section on viterbi's inner loop can also be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158224 91177308-0d34-0410-b5e6-96231b3b80d8
"sext cond" instead of a select. This simplifies some instcombine
code, matches the policy for zext (cond ? 1 : 0 -> zext), and allows
us to generate better code for a testcase on ppc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94339 91177308-0d34-0410-b5e6-96231b3b80d8
the code generated is not wonderful. This turns a miscompilation into
a code quality bug (noted in the ppc readme). This fixes PR642, which
is over 2 years old (!). Nate, please review this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45742 91177308-0d34-0410-b5e6-96231b3b80d8
The algorithm it used before wasn't 100% correct, we now use an iterative
expansion model. This fixes assembler errors when compiling 403.gcc with
tail merging enabled.
Change the way the branch selector works overall: Now, the isel generates
PPC::BCC instructions (as it used to) directly, and these BCC instructions
are emitted to the output or jitted directly if branches don't need
expansion. Only if branches need expansion are instructions rewritten
and created. This should make branch select faster, and eliminates the
Bxx instructions from the .td file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31837 91177308-0d34-0410-b5e6-96231b3b80d8