alloca instructions (constrained by their internal encoding),
and add error checking for it. Fix an instcombine bug which
generated huge alignment values (null is infinitely aligned).
This fixes undefined behavior noticed by John Regehr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109643 91177308-0d34-0410-b5e6-96231b3b80d8
This patch also cleans up code that expects there to be a bitcast in the first argument and testcases that call llvm.dbg.declare.
It also strips old llvm.dbg.declare intrinsics that did not pass metadata as the first argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93531 91177308-0d34-0410-b5e6-96231b3b80d8
This patch also cleans up code that expects there to be a bitcast in the first argument and testcases that call llvm.dbg.declare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93504 91177308-0d34-0410-b5e6-96231b3b80d8
Add another line to the ConstantExprFold test to demonstrate the GEPs may not
wrap around in either the signed or unsigned senses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82361 91177308-0d34-0410-b5e6-96231b3b80d8
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81537 91177308-0d34-0410-b5e6-96231b3b80d8
how to fold notionally-out-of-bounds array getelementptr indices instead
of just doing these in lib/Analysis/ConstantFolding.cpp, because it can
be done in a fairly general way without TargetData, and because not all
constants are visited by lib/Analysis/ConstantFolding.cpp. This enables
more constant folding.
Also, set the "inbounds" flag when the getelementptr indices are
one-past-the-end.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81483 91177308-0d34-0410-b5e6-96231b3b80d8
Constant uniquing tables. This allows distinct ConstantExpr objects
with the same operation and different flags.
Even though a ConstantExpr "a + b" is either always overflowing or
never overflowing (due to being a ConstantExpr), it's still necessary
to be able to represent it both with and without overflow flags at
the same time within the IR, because the safety of the flag may
depend on the context of the use. If the constant really does overflow,
it wouldn't ever be safe to use with the flag set, however the use
may be in code that is never actually executed.
This also makes it possible to merge all the flags tests into a single test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80998 91177308-0d34-0410-b5e6-96231b3b80d8
and unnamed numbered global variables as "@0 = global ...". Extend the
AsmParser to recognize these forms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78859 91177308-0d34-0410-b5e6-96231b3b80d8
There's still a strict-aliasing violation here, but I don't feel like
dealing with that right now...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77005 91177308-0d34-0410-b5e6-96231b3b80d8
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
This only rejects mismatches between target specific calling convention
and C/LLVM specific calling convention.
There are too many fastcc/C, coldcc/cc42 mismatches in the testsuite, these are
not reject by the verifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72248 91177308-0d34-0410-b5e6-96231b3b80d8