Summary:
Historically, we had a switch in the Makefiles for turning on "expensive
checks". This has never been ported to the cmake build, but the
(dead-ish) code is still around.
This will also make it easier to turn it on in buildbots.
Reviewers: chandlerc
Subscribers: jyknight, mzolotukhin, RKSimon, gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D19723
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268050 91177308-0d34-0410-b5e6-96231b3b80d8
the prologue.
Do not use basic blocks that have EFLAGS live-in as prologue if we need
to realign the stack. Realigning the stack uses AND instruction and this
clobbers EFLAGS.
An other alternative would have been to save and restore EFLAGS around
the stack realignment code, but this is likely inefficient.
Fixes PR27531.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267634 91177308-0d34-0410-b5e6-96231b3b80d8
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D18902
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266252 91177308-0d34-0410-b5e6-96231b3b80d8
Third time's the charm? The previous attempt (r265345) caused ASan test
failures on X86, as broken CFI caused stack traces to not work.
This version of the patch makes sure not to merge with stack adjustments
that have CFI, and to not add merged instructions' offests to the CFI
about to be generated.
This is already covered by the lit tests; I just got the expectations
wrong previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265623 91177308-0d34-0410-b5e6-96231b3b80d8
The original commit miscompiled things on 32-bit Windows, e.g. a Clang
boostrap. It turns out that mergeSPUpdates() was a bit too generous in
what it interpreted as a stack adjustment, causing the following code:
addl $12, %esp
leal -4(%ebp), %esp
To be "optimized" into simply:
addl $8, %esp
This commit tightens up mergeSPUpdates() and includes a new test
(test14 in movtopush.ll) for this situation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265345 91177308-0d34-0410-b5e6-96231b3b80d8
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265036 91177308-0d34-0410-b5e6-96231b3b80d8
When trying to replace an add to esp with pops, we need to choose dead
registers to pop into. Registers clobbered by the call and not imp-def'd
by it should be safe. Except that it's not enough to check the register
itself isn't defined, we also need to make sure no overlapping registers
are defined either.
This fixes PR26711.
Differential Revision: http://reviews.llvm.org/D18029
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263139 91177308-0d34-0410-b5e6-96231b3b80d8
The x86 ret instruction has a 16 bit immediate indicating how many bytes
to pop off of the stack beyond the return address.
There is a problem when extremely large structs are passed by value: we
might not be able to fit the number of bytes to pop into the return
instruction.
To fix this, expand RET_FLAG a little later and use a special sequence
to clean the stack:
pop %ecx ; return address is now in %ecx
add $n, %esp ; clean the stack
push %ecx ; bring the return address back on the stack
ret ; pop the return address and jmp to it's value
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262755 91177308-0d34-0410-b5e6-96231b3b80d8
Catch objects with a displacement of zero do not initialize a catch
object. The displacement is relative to %rsp at the end of the
function's prologue for x86_64 targets.
If we place an object at the top-of-stack, we will end up wit a
displacement of zero resulting in our catch object remaining
uninitialized.
Address this by creating our catch objects as fixed objects. We will
ensure that the UnwindHelp object is created after the catch objects so
that no catch object will have a displacement of zero.
Differential Revision: http://reviews.llvm.org/D17823
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262546 91177308-0d34-0410-b5e6-96231b3b80d8
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261504 91177308-0d34-0410-b5e6-96231b3b80d8
__chkstk clobbers EAX. If EAX is live across the prologue, then we have
to take extra steps to save it. We already had code to do this if EAX
was a register parameter. This change adapts it to work when shrink
wrapping is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261039 91177308-0d34-0410-b5e6-96231b3b80d8
When the merging was involving LEAs, we were taking the wrong immediate
from the list of operands.
rdar://problem/24446069
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259553 91177308-0d34-0410-b5e6-96231b3b80d8
calling convention.
The implementation of the related callbacks in the x86 backend for such
functions are not ready to deal with a prologue block that is not the entry
block of the function.
This fixes PR26107, but the longer term solution would be to fix those callbacks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@258221 91177308-0d34-0410-b5e6-96231b3b80d8
We rely on HasOpaqueSPAdjustment not changing after we've calculated
things based on it. Things like whether or not we can use 'rep;movs' to
copy bytes around, that sort of thing. If it changes, invariants in the
backend will quietly break. This situation arose when we had a call to
memcpy *and* a COPY of the FLAGS register where we would attempt to
reference local variables using %esi, a register that was clobbered by
the 'rep;movs'.
This fixes PR26124.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257730 91177308-0d34-0410-b5e6-96231b3b80d8
We need a frame pointer if there is a push/pop sequence after the
prologue in order to unwind the stack. Scanning the instructions to
figure out if this happened made hasFP not constant-time which is a
violation of expectations. Let's compute this up-front and reuse that
computation when we need it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@256730 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM's targets need to know if stack pointer adjustments occur after the
prologue. This is needed to correctly determine if the red-zone is
appropriate to use or if a frame pointer is required.
Normally, LLVM can figure this out very precisely by reasoning about the
contents of the MachineFunction. There is an interesting corner case:
inline assembly.
The vast majority of inline assembly which will perform a push or pop is
done so to pair up with pushf or popf as appropriate. Unfortunately,
this inline assembly doesn't mark the stack pointer as clobbered
because, well, it isn't. The stack pointer is decremented and then
immediately incremented. Because of this, LLVM was changed in r256456
to conservatively assume that inline assembly contain a sequence of
stack operations. This is unfortunate because the vast majority of
inline assembly will not end up manipulating the stack pointer in any
way at all.
Instead, let's provide a more principled solution: an intrinsic.
FWIW, other compilers (MSVC and GCC among them) also provide this
functionality as an intrinsic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@256685 91177308-0d34-0410-b5e6-96231b3b80d8
A frame pointer must be used if stack pointer is modified after the
prologue. LLVM will emit pushf/popf if we need to save/restore the
FLAGS register, requiring us to have a frame pointer for the function.
There is a small twist: this sequence might exist in user code via
inline-assembly. For now, conservatively assume that such functions
require a frame pointer. For real world justification, please see
clang's implementation of __readeflags.
This fixes PR25945.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@256456 91177308-0d34-0410-b5e6-96231b3b80d8
This a is step towards fixing a layering violation so the X86 AsmParser won't depending on CodeGen types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@256425 91177308-0d34-0410-b5e6-96231b3b80d8
It adjusts from RSP-after-prologue to RBP, which is what SEH filters
need to do before they can use llvm.localrecover.
Fixes SEH filter captures, which were broken in r250088.
Issue reported by Alex Crichton.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255707 91177308-0d34-0410-b5e6-96231b3b80d8
without a frame pointer when unwind may happen.
This is a workaround for a bug in the way we emit the CFI directives for
frameless unwind information. See PR25614.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255175 91177308-0d34-0410-b5e6-96231b3b80d8
This removes the code path that generate "synchronous" (only correct at call site) CFA.
We will probably want to re-introduce it once we are capable of emitting different
.eh_frame and .debug_frame sections.
Differential Revision: http://reviews.llvm.org/D14948
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254874 91177308-0d34-0410-b5e6-96231b3b80d8
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253965 91177308-0d34-0410-b5e6-96231b3b80d8
Caller saved regs differ between SysV and Win64. Use the tail call available set to scavenge from.
Refactor register info to create new helper to get at tail call GPRs. Added a new test case for windows. Fixed up a number of X64 tests since now RCX is preferred over RDX on SysV.
Differential Revision: http://reviews.llvm.org/D14878
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253927 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Now that there is a one-to-one mapping from MachineFunction to
WinEHFuncInfo, we don't need to use a DenseMap to select the right
WinEHFuncInfo for the current funclet.
The main challenge here is that X86WinEHStatePass is an IR pass that
doesn't have access to the MachineFunction. I gave it its own
WinEHFuncInfo object that it uses to calculate state numbers, which it
then throws away. As long as nobody creates or removes EH pads between
this pass and SDAG construction, we will get the same state numbers.
The other thing X86WinEHStatePass does is to mark the EH registration
node. Instead of communicating which alloca was the registration through
WinEHFuncInfo, I added the llvm.x86.seh.ehregnode intrinsic. This
intrinsic generates no code and simply marks the alloca in use.
Reviewers: JCTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253378 91177308-0d34-0410-b5e6-96231b3b80d8
On top of that, don't bother allocating and initializing UnwindHelp if
we don't have any funclets. Currently we always use RBP as our frame
pointer when funclets are present, so this change makes it impossible to
come here without any fixed stack objects.
Fixes PR25533.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253245 91177308-0d34-0410-b5e6-96231b3b80d8
The C++ EH personality automatically restores ESP from the C++ EH
registration node after a catchret. I mistakenly thought it was like
SEH, which does not restore ESP.
It makes sense for C++ EH to differ from SEH here because SEH does not
use funclets for catches, and does not allow catching inside of finally.
C++ EH may need to unwind through multiple catch funclets and eventually
catchret to some outer funclet. Therefore, the runtime has to keep track
of which ESP to use with catchret, rather than having the compiler
reload it manually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253084 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252983 91177308-0d34-0410-b5e6-96231b3b80d8
For CoreCLR on Windows, stack probes must be emitted as inline sequences that probe successive stack pages
between the current stack limit and the desired new stack pointer location. This implements support for
the inline expansion on x64.
For in-body alloca probes, expansion is done during instruction lowering. For prolog probes, a stub call
is initially emitted during prolog creation, and expanded after epilog generation, to avoid complications
that arise when introducing new machine basic blocks during prolog and epilog creation.
Added a new test case, modified an existing one to exclude non-x64 coreclr (for now).
Add test case
Fix tests
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252578 91177308-0d34-0410-b5e6-96231b3b80d8
For some reason we'd never run MachineVerifier on WinEH code, and you
explicitly have to ask for it with llc. I added it to a few test cases
to get some coverage.
Fixes PR25461.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252512 91177308-0d34-0410-b5e6-96231b3b80d8