This recommits r281323, which was backed out for two reasons. One, a selfhost failure, and two, it apparently caused Chromium failures. Actually, the latter was a red herring. The log has expired from the former, but I suspect that was a red herring too (actually caused by another problematic patch of mine). Therefore reapplying, and will watch the bots like a hawk.
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285893 91177308-0d34-0410-b5e6-96231b3b80d8
[Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment]
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285690 91177308-0d34-0410-b5e6-96231b3b80d8
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284580 91177308-0d34-0410-b5e6-96231b3b80d8
Reverts r283938 to reinstate r283867 with a fix.
The original change had an ArrayRef referring to a destroyed temporary
initializer list. Use plain C arrays instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283942 91177308-0d34-0410-b5e6-96231b3b80d8
The high registers are not allocatable in Thumb1 functions, but they
could still be used by inline assembly, so we need to save and restore
the callee-saved high registers (r8-r11) in the prologue and epilogue.
This is complicated by the fact that the Thumb1 push and pop
instructions cannot access these registers. Therefore, we have to move
them down into low registers before pushing, and move them back after
popping into low registers.
In most functions, we will have low registers that are also being
pushed/popped, which we can use as the temporary registers for
saving/restoring the high registers. However, this is not guaranteed, so
we may need to push some extra low registers to ensure that the high
registers can be saved/restored. For correctness, it would be sufficient
to use just one low register, but if we have enough low registers
available then we only need one push/pop instruction, rather than one
per high register.
We can also use the argument/return registers when they are not live,
and the link register when saving (but not restoring), reducing the
number of extra registers we need to push.
There are still a few extreme edge cases where we need two push/pop
instructions, because not enough low registers can be made live in the
prologue or epilogue.
In addition to the regression tests included here, I've also tested this
using a script to generate functions which clobber different
combinations of registers, have different numbers of argument and return
registers (including variadic arguments), allocate different fixed sized
objects on the stack, and do or don't use variable sized allocas and the
__builtin_return_address intrinsic (all of which affect the available
registers in the prologue and epilogue). I ran these functions in a test
harness which verifies that all of the callee-saved registers are
correctly preserved.
Differential Revision: https://reviews.llvm.org/D24228
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283867 91177308-0d34-0410-b5e6-96231b3b80d8
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281323 91177308-0d34-0410-b5e6-96231b3b80d8
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281215 91177308-0d34-0410-b5e6-96231b3b80d8
The CMPZ #0 disappears during peepholing, leaving just a tADDi3, tADDi8 or t2ADDri. This avoids having to materialize the expensive negative constant in Thumb-1, and allows a shrinking from a 32-bit CMN to a 16-bit ADDS in Thumb-2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281040 91177308-0d34-0410-b5e6-96231b3b80d8
The original commit was too aggressive about marking LibCalls as AAPCS. The
libcalls contain libc/libm/libunwind calls which are not AAPCS, but C.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280833 91177308-0d34-0410-b5e6-96231b3b80d8
All of the builtins are designed to be invoked with ARM AAPCS CC even on ARM
AAPCS VFP CC hosts. Tweak the default initialisation to ARM AAPCS CC rather
than C CC for ARM/thumb targets.
The changes to the tests are necessary to ensure that the calling convention for
the lowered library calls are honoured. Furthermore, these adjustments cause
certain branch invocations to change to branch-and-link since the returned value
needs to be moved across registers (d0 -> r0, r1).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280683 91177308-0d34-0410-b5e6-96231b3b80d8
Passing the wrong values for predicate-clobbering. Simple to miss.
Added an assert to make this easier to catch in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280517 91177308-0d34-0410-b5e6-96231b3b80d8
The cost of predicating a diamond is only the instructions that are not shared
between the two branches. Additionally If a predicate clobbering instruction
occurs in the shared portion of the branches (e.g. a cond move), it may still
be possible to if convert the sub-cfg. This change handles these two facts by
rescanning the non-shared portion of a diamond sub-cfg to recalculate both the
predication cost and whether both blocks are pred-clobbering.
Fixed 2 bugs before recommitting. Branch instructions must be compared and found
identical before diamond conversion. Also, predicate-clobbering instructions in
the shared prefix disqualifies a potential diamond conversion. Includes tests
for both.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279670 91177308-0d34-0410-b5e6-96231b3b80d8
There is not an official documented ABI for frame pointers in Thumb2,
but we should try to emit something which is useful.
We use r7 as the frame pointer for Thumb code, which currently means
that if a function needs to save a high register (r8-r11), it will get
pushed to the stack between the frame pointer (r7) and link register
(r14). This means that while a stack unwinder can follow the chain of
frame pointers up the stack, it cannot know the offset to lr, so does
not know which functions correspond to the stack frames.
To fix this, we need to push the callee-saved registers in two batches,
with the first push saving the low registers, fp and lr, and the second
push saving the high registers. This is already implemented, but
previously only used for iOS. This patch turns it on for all Thumb2
targets when frame pointers are required by the ABI, and the frame
pointer is r7 (Windows uses r11, so this isn't a problem there). If
frame pointer elimination is enabled we still emit a single push/pop
even if we need a frame pointer for other reasons, to avoid increasing
code size.
We must also ensure that lr is pushed to the stack when using a frame
pointer, so that we end up with a complete frame record. Situations that
could cause this were rare, because we already push lr in most
situations so that we can return using the pop instruction.
Differential Revision: https://reviews.llvm.org/D23516
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279506 91177308-0d34-0410-b5e6-96231b3b80d8
The following function currently relies on tail-merging for if
conversion to succeed. The common tail of cond_true and cond_false is
extracted, and this then forms a diamond pattern that can be
successfully if converted.
If this block does not get extracted, either because tail-merging is
disabled or the threshold is higher, we should still recognize this
pattern and if-convert it.
Fixed a regression in the original commit. Need to un-reverse branches after
reversing them, or other conversions go awry.
Regression on self-hosting bots with no obvious explanation. Tidied up range
handling to be more obviously correct, but there was no smoking gun.
define i32 @t2(i32 %a, i32 %b) nounwind {
entry:
%tmp1434 = icmp eq i32 %a, %b ; <i1> [#uses=1]
br i1 %tmp1434, label %bb17, label %bb.outer
bb.outer: ; preds = %cond_false, %entry
%b_addr.021.0.ph = phi i32 [ %b, %entry ], [ %tmp10, %cond_false ]
%a_addr.026.0.ph = phi i32 [ %a, %entry ], [ %a_addr.026.0, %cond_false ]
br label %bb
bb: ; preds = %cond_true, %bb.outer
%indvar = phi i32 [ 0, %bb.outer ], [ %indvar.next, %cond_true ]
%tmp. = sub i32 0, %b_addr.021.0.ph
%tmp.40 = mul i32 %indvar, %tmp.
%a_addr.026.0 = add i32 %tmp.40, %a_addr.026.0.ph
%tmp3 = icmp sgt i32 %a_addr.026.0, %b_addr.021.0.ph
br i1 %tmp3, label %cond_true, label %cond_false
cond_true: ; preds = %bb
%tmp7 = sub i32 %a_addr.026.0, %b_addr.021.0.ph
%tmp1437 = icmp eq i32 %tmp7, %b_addr.021.0.ph
%indvar.next = add i32 %indvar, 1
br i1 %tmp1437, label %bb17, label %bb
cond_false: ; preds = %bb
%tmp10 = sub i32 %b_addr.021.0.ph, %a_addr.026.0
%tmp14 = icmp eq i32 %a_addr.026.0, %tmp10
br i1 %tmp14, label %bb17, label %bb.outer
bb17: ; preds = %cond_false, %cond_true, %entry
%a_addr.026.1 = phi i32 [ %a, %entry ], [ %tmp7, %cond_true ], [ %a_addr.026.0, %cond_false ]
ret i32 %a_addr.026.1
}
Without tail-merging or diamond-tail if conversion:
LBB1_1: @ %bb
@ =>This Inner Loop Header: Depth=1
cmp r0, r1
ble LBB1_3
@ BB#2: @ %cond_true
@ in Loop: Header=BB1_1 Depth=1
subs r0, r0, r1
cmp r1, r0
it ne
cmpne r0, r1
bgt LBB1_4
LBB1_3: @ %cond_false
@ in Loop: Header=BB1_1 Depth=1
subs r1, r1, r0
cmp r1, r0
bne LBB1_1
LBB1_4: @ %bb17
bx lr
With diamond-tail if conversion, but without tail-merging:
@ BB#0: @ %entry
cmp r0, r1
it eq
bxeq lr
LBB1_1: @ %bb
@ =>This Inner Loop Header: Depth=1
cmp r0, r1
ite le
suble r1, r1, r0
subgt r0, r0, r1
cmp r1, r0
bne LBB1_1
@ BB#2: @ %bb17
bx lr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279168 91177308-0d34-0410-b5e6-96231b3b80d8
Created a Thumb2 predicated pattern matcher that uses Thumb2 and
HasT2ExtractPack and used it to redefine the patterns for sxta{b|h}
and uxta{b|h}. Also used the similar patterns to fill in isel pattern
gaps for the corresponding instructions in the ARM backend.
The patch is mainly changes to tests since most of this functionality
appears not to have been tested.
Differential Revision: https://reviews.llvm.org/D23273
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278207 91177308-0d34-0410-b5e6-96231b3b80d8
The important thing I was missing was ensuring newly added constants were kept in topological order. Repositioning the node is correct if the constant is newly added (so it has no topological ordering) but wrong if it already existed - positioning it next in the worklist would break the topological ordering.
Original commit message:
[Thumb] Select a BIC instead of AND if the immediate can be encoded more optimally negated
If an immediate is only used in an AND node, it is possible that the immediate can be more optimally materialized when negated. If this is the case, we can negate the immediate and use a BIC instead;
int i(int a) {
return a & 0xfffffeec;
}
Used to produce:
ldr r1, [CONSTPOOL]
ands r0, r1
CONSTPOOL: 0xfffffeec
And now produces:
movs r1, #255
adds r1, #20 ; Less costly immediate generation
bics r0, r1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274543 91177308-0d34-0410-b5e6-96231b3b80d8
We were using DAG->getConstant instead of DAG->getTargetConstant. This meant that we could inadvertently increase the use count of a constant if stars aligned, which it did in this testcase. Increasing the use count of the constant could cause ISel to fall over (because DAGToDAG lowering assumed the constant had only one use!)
Original commit message:
[Thumb] Select a BIC instead of AND if the immediate can be encoded more optimally negated
If an immediate is only used in an AND node, it is possible that the immediate can be more optimally materialized when negated. If this is the case, we can negate the immediate and use a BIC instead;
int i(int a) {
return a & 0xfffffeec;
}
Used to produce:
ldr r1, [CONSTPOOL]
ands r0, r1
CONSTPOOL: 0xfffffeec
And now produces:
movs r1, #255
adds r1, #20 ; Less costly immediate generation
bics r0, r1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274510 91177308-0d34-0410-b5e6-96231b3b80d8
Tail merge was making the assumption that a layout successor or
predecessor was always a cfg successor/predecessor. Remove that
assumption. Changes to tests are necessary because the errant cfg edges
were preventing optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273700 91177308-0d34-0410-b5e6-96231b3b80d8
The R_ARM_PLT32 relocation is deprecated and is not produced by MC.
This means that the code being deleted is dead from the .o point of
view and was making the .s more confusing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272909 91177308-0d34-0410-b5e6-96231b3b80d8
I'm really not sure why we were in the first place, it's the linker's job to
convert between BL/BLX as necessary. Even worse, using BLX left Thumb calls
that could be locally resolved completely unencodable since all offsets to BLX
are multiples of 4.
rdar://26182344
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269101 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
While setting kill flags on instructions inside a BUNDLE, we bail out as soon
as we set kill flag on a register. But we are missing a check when all the
registers already have the correct kill flag set. We need to bail out in that
case as well.
This patch refactors the old code and simply makes use of the addRegisterKilled
function in MachineInstr.cpp in order to determine whether to set/remove kill
on an instruction.
Reviewers: apazos, t.p.northover, pete, MatzeB
Subscribers: MatzeB, davide, llvm-commits
Differential Revision: http://reviews.llvm.org/D17356
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269092 91177308-0d34-0410-b5e6-96231b3b80d8
This is better for a few reasons:
+ It matches the other tooling for iOS.
+ It matches EABI in more cases (i.e. Thumb-mode, and in practice we don't
use ARM mode).
+ It leads to infinitesimally smaller code (0.2%, yay!).
rdar://25369506
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266003 91177308-0d34-0410-b5e6-96231b3b80d8
Minimum density for both optsize and non optsize are now options
-sparse-jump-table-density (default 10) for non optsize functions
-dense-jump-table-density (default 40) for optsize functions, which
matches the current default. This improves several benchmarks at google
at the cost of a small codesize increase. For code compiled with -Os,
the old behavior continues
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264689 91177308-0d34-0410-b5e6-96231b3b80d8
Most of the time ARM has the CCR.UNALIGN_TRP bit set to false which
means that unaligned loads/stores do not trap and even extensive testing
will not catch these bugs. However the multi/double variants are not
affected by this bit and will still trap. In effect a more aggressive
load/store optimization will break existing (bad) code.
These bugs do not necessarily manifest in the broken code where the
misaligned pointer is formed but often later in perfectly legal code
where it is accessed. This means recompiling system libraries (which
have no alignment bugs) with a newer compiler will break existing
applications (with alignment bugs) that worked before.
So (under protest) I implemented this safe mode which limits the
formation of multi/double operations to cases that are not affected by
user code (stack operations like spills/reloads) or cases where the
normal operations trap anyway (floating point load/stores). It is
disabled by default.
Differential Revision: http://reviews.llvm.org/D17015
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262504 91177308-0d34-0410-b5e6-96231b3b80d8
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.
This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.
The original commit triggered regressions in Polly tests. The regressions
exposed two problems which have been fixed in current version.
1. Polly will generate a new function based on the old one. To generate an
instruction for the new function, it builds SCEV for the old instruction,
applies some tranformation on the SCEV generated, then expands the transformed
SCEV and insert the expanded value into new function. Because SCEV expansion
may reuse value cached in ExprValueMap, the value in old function may be
inserted into new function, which is wrong.
In SCEVExpander::expand, there is a logic to check the cached value to
be used should dominate the insertion point. However, for the above
case, the check always passes. That is because the insertion point is
in a new function, which is unreachable from the old function. However
for unreachable node, DominatorTreeBase::dominates thinks it will be
dominated by any other node.
The fix is to simply add a check that the cached value to be used in
expansion should be in the same function as the insertion point instruction.
2. When the SCEV is of scConstant type, expanding it directly is cheaper than
reusing a normal value cached. Although in the cached value set in ExprValueMap,
there is a Constant type value, but it is not easy to find it out -- the cached
Value set is not sorted according to the potential cost. Existing reuse logic
in SCEVExpander::expand simply chooses the first legal element from the cached
value set.
The fix is that when the SCEV is of scConstant type, don't try the reuse
logic. simply expand it.
Differential Revision: http://reviews.llvm.org/D12090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259736 91177308-0d34-0410-b5e6-96231b3b80d8
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.
This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.
Differential Revision: http://reviews.llvm.org/D12090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259662 91177308-0d34-0410-b5e6-96231b3b80d8
For historic reasons, the behavior of .align differs between targets.
Fortunately, there are alternatives, .p2align and .balign, which make the
interpretation of the parameter explicit, and which behave consistently across
targets.
This patch teaches MC to use .p2align instead of .align, so that people reading
code for multiple architectures don't have to remember which way each platform
does its .align directive.
Differential Revision: http://reviews.llvm.org/D16549
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@258750 91177308-0d34-0410-b5e6-96231b3b80d8
Several (but not all) of the labels that are checked for in this test case
are checked as strings instead of labels. This can cause an apparent test
case failure if they are tested in an appropriately named directory.
For example, one of them that fails:
define zeroext i32 @test2(i32 %A.u, i32 %B.u) {
; A8: test2
; A8: uxtab r0, r0, r1
Output that causes it to fail:
. . .
.file "/home/seurer/llvm/llvm-test2/test/CodeGen/Thumb2/thumb2-uxt_rot.ll"
. . .
.globl test2
.align 1
.type test2,%function
.code 16 @ @test2
.thumb_func
test2:
.fnstart
The "A8: test2" matches on the directory name instead of the label.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253702 91177308-0d34-0410-b5e6-96231b3b80d8
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253511 91177308-0d34-0410-b5e6-96231b3b80d8
- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
Differential Revision: http://reviews.llvm.org/D11172
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252839 91177308-0d34-0410-b5e6-96231b3b80d8