for a quite big function with source like
%add = add nsw i32 %mul, %conv
%mul1 = mul nsw i32 %add, %conv
%add2 = add nsw i32 %mul1, %add
%mul3 = mul nsw i32 %add2, %add
; repeat couple of thousands times
that can be produced by loop unroll, getAddExpr() tries to recursively construct SCEV and runs almost infinite time.
Added recursion depth restriction (with new parameter to set it)
Reviewers: sanjoy
Subscribers: hfinkel, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D28158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294181 91177308-0d34-0410-b5e6-96231b3b80d8
Triple::objectFormat defaults to an Elf format.
Changing objectFormat to Elf doesn't make any difference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294104 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: As per title. I ran into that limitation of the API doing some other work, so I though that'd be a nice addition.
Reviewers: jroelofs, compnerd, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29503
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294063 91177308-0d34-0410-b5e6-96231b3b80d8
If LLVM was configured with an x86_64-apple-macosx host triple, this
test would fail, as the API works but the triple isn't in the whitelist.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293990 91177308-0d34-0410-b5e6-96231b3b80d8
Add both cores to the target parser and TableGen. Test that eabi
attributes are set correctly for both cores. Additionally, test the
absence and presence of MOVT in Cortex-M23 and Cortex-M33, respectively.
Committed on behalf of Sanne Wouda.
Reviewers : rengolin, olista01.
Differential Revision: https://reviews.llvm.org/D29073
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293761 91177308-0d34-0410-b5e6-96231b3b80d8
insertUse, moveBefore and moveAfter operations.
Summary:
This creates a basic MemorySSA updater that handles arbitrary
insertion of uses and defs into MemorySSA, as well as arbitrary
movement around the CFG. It replaces the current splice API.
It can be made to handle arbitrary control flow changes.
Currently, it uses the same updater algorithm from D28934.
The main difference is because MemorySSA is single variable, we have
the complete def and use list, and don't need anyone to give it to us
as part of the API. We also have to rename stores below us in some
cases.
If we go that direction in that patch, i will merge all the updater
implementations (using an updater_traits or something to provide the
get* functions we use, called read*/write* in that patch).
Sadly, the current SSAUpdater algorithm is way too slow to use for
what we are doing here.
I have updated the tests we have to basically build memoryssa
incrementally using the updater api, and make sure it still comes out
the same.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29047
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293356 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the first in a series of patches to add a simple, generalized updater to MemorySSA.
For MemorySSA, every def is may-def, instead of the normal must-def.
(the best way to think of memoryssa is "everything is really one variable, with different versions of that variable at different points in the program).
This means when updating, we end up having to do a bunch of work to touch defs below and above us.
In order to support this quickly, i have ilist'd all the defs for each block. ilist supports tags, so this is quite easy. the only slightly messy part is that you can't have two iplists for the same type that differ only whether they have the ownership part enabled or not, because the traits are for the value type.
The verifiers have been updated to test that the def order is correct.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293085 91177308-0d34-0410-b5e6-96231b3b80d8
AssertingVH that delays any reported error until the handle is *used*.
This allows data structures to contain handles which become dangling
provided the data structure is cleaned up afterward rather than used for
anything interesting.
The implementation is moderately horrible in part because it works to
leave AssertingVH in place, undisturbed. If at some point there is
consensus that this is simply how AssertingVH should be used, it can be
substantially simplified.
This remains a boring pointer in a non-asserts build as you would
expect. The only place we pay cost is in asserts builds.
I plan to use this as a basis for replacing the asserting VHs that
currently dangle in the new PM until invalidation occurs in both LVI and
SCEV.
Differential Revision: https://reviews.llvm.org/D29061
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292925 91177308-0d34-0410-b5e6-96231b3b80d8
The test fails when there is a symlink on the path because then the path
returned by current_path will not match the one we have set. Instead of
doing a string match check the unique id of the two files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292916 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds a cross-platform way of setting the current working directory
analogous to the existing current_path() function used for retrieving
it. The function will be used in lldb.
Reviewers: rafael, silvas, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29035
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292907 91177308-0d34-0410-b5e6-96231b3b80d8
This refactor allows parallel calls to be made via an arbitrary async call
dispatcher. In particular, this allows ParallelCallGroup to be used with
derived RPC classes that expose custom async RPC call operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292891 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This seemed to be an oversight seeing as DenseMap has these conversions.
This patch does the following:
- Adds a default constructor to the iterators.
- Allows DenseSet::ConstIterators to be copy constructed from DenseSet::Iterators
- Allows mutual comparison between Iterators and ConstIterators.
All of these are available in the DenseMap implementation, so the implementation here is trivial.
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28999
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292879 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There's a comment in XorSlowCase that says "0^0==1" which isn't true. 0 xored with 0 is still 0. So I don't think we need to clear any unused bits here.
Now there is no difference between XorSlowCase and AndSlowCase/OrSlowCase other than the operation being performed
Reviewers: majnemer, MatzeB, chandlerc, bkramer
Reviewed By: MatzeB
Subscribers: chfast, llvm-commits
Differential Revision: https://reviews.llvm.org/D28986
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292873 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292848 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292839 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the last remaining core feature of the loop pass pipeline in
the new PM and removes the last of the really egregious hacks in the
LICM tests.
Sadly, this requires really substantial changes in the unittests in
order to provide and maintain simplified loops. This is particularly
hard because for example LoopSimplify will try to fold undef branches to
an ideal direction and simplify the loop accordingly.
Differential Revision: https://reviews.llvm.org/D28766
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292709 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch adds some new APIs to enable using the YAML DWARF representation in unit tests. The most basic new API is DWARFYAML::EmitDebugSections which converts a YAML string into a series of owned MemoryBuffer objects stored in a StringMap. The string map can then be used to construct a DWARFContext for parsing in place of an ObjectFile.
Reviewers: dblaikie, clayborg
Subscribers: mgorny, fhahn, jgosnell, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D28828
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292634 91177308-0d34-0410-b5e6-96231b3b80d8
loops in a function.
These are relatively confusing to talk about and compute correctly so it
seems really good to write down their implementation in one place. I've
replaced one place we needed this in the loop PM infrastructure and
I have another place in a pending patch that wants it.
We can't quite use this for the core loop PM walk because there we're
sometimes working on a sub-forest.
I'll add the expected unittests before committing this but wanted to
make sure folks were happy with these names / comments.
Credit goes to Richard Smith for the idea for naming the order where siblings
are in reverse program order but the tree traversal remains preorder.
Differential Revision: https://reviews.llvm.org/D28932
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292569 91177308-0d34-0410-b5e6-96231b3b80d8
This was being parsed / serialized ad-hoc inside the code
for a specific PDB stream. But this data structure is used
in multiple ways / places within the PDB format. To be able
to re-use it we need to raise this code out and make it more
generic. In doing so, a number of bugs are fixed in the
original implementation, and support is added for growing
the hash table and deleting items from the hash table,
which had either been omitted or incorrect implemented in
the initial version.
Differential Revision: https://reviews.llvm.org/D28715
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292535 91177308-0d34-0410-b5e6-96231b3b80d8
Enable an ELFObjectFile to read the its arm build attributes to
produce a target triple with a specific ARM architecture.
llvm-objdump now uses this functionality to automatically produce
a more accurate target.
Differential Revision: https://reviews.llvm.org/D28769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292366 91177308-0d34-0410-b5e6-96231b3b80d8
other test cases.
Summary: Refactor out LoopInfo computation so that it can be
used by other test cases.
So i am changing this test proactively for later commit, which will use
this function.
Reviewers: sanjoy, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292250 91177308-0d34-0410-b5e6-96231b3b80d8
No any changes, will follow up with D28807 commit containing APLi change for clang
to fix build issues happened.
Original commit message:
[Support/Compression] - Change zlib API to return Error instead of custom status.
Previously API returned custom enum values.
Patch changes it to return Error with string description.
That should help users to report errors in universal way.
Differential revision: https://reviews.llvm.org/D28684
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292226 91177308-0d34-0410-b5e6-96231b3b80d8
This is another step towards unifying all LibFunc prototype checks.
This work started in r267758 (D19469); add the remaining checks.
Also add a unittest that checks each libfunc declared with a known-valid
and known-invalid prototype. New libfuncs added in the future are
required to have prototype checking in place; the known-valid test will
fail otherwise.
Differential Revision: https://reviews.llvm.org/D28030
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292188 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Use getLoopLatch in place of isLoopSimplifyForm. we do not need
to know whether the loop has a preheader nor dedicated exits.
Reviewers: hfinkel, sanjoy, atrick, mkuper
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D28724
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292078 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds a new class NameHashTableBuilder which creates /names streams.
This patch contains a test to confirm that a stream created by
NameHashTableBuilder can be read by NameHashTable reader class.
Differential Revision: https://reviews.llvm.org/D28707
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292040 91177308-0d34-0410-b5e6-96231b3b80d8
mark it as never invalidated in the new PM.
The old PM already required this to work, and after a discussion with
Hal this seems to really be the only sensible answer. The cache
gracefully degrades as the IR is mutated, and most things which do this
should already be incrementally updating the cache.
This gets rid of a bunch of logic preserving and testing the
invalidation of this analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292039 91177308-0d34-0410-b5e6-96231b3b80d8
extractProfTotalWeight checks if the profile type is sample profile, but
before that we have to ensure that summary is available. Also expanded
the unittest to test the case where there is no summar
Differential Revision: https://reviews.llvm.org/D28708
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291982 91177308-0d34-0410-b5e6-96231b3b80d8
Removed all DWARFDie::getAttributeValueAs*() calls.
Renamed:
Optional<DWARFFormValue> DWARFDie::getAttributeValue(dwarf::Attribute);
To:
Optional<DWARFFormValue> DWARFDie::find(dwarf::Attribute);
Added:
Optional<DWARFFormValue> DWARFDie::findRecursively(dwarf::Attribute);
All decoding of Optional<DWARFFormValue> values are now done using the dwarf::to*() functions from DWARFFormValue.h:
Old code:
auto DeclLine = DWARFDie.getAttributeValueAsSignedConstant(DW_AT_decl_line).getValueOr(0);
New code:
auto DeclLine = toUnsigned(DWARFDie.find(DW_AT_decl_line), 0);
This composition helps us since we can now easily do:
auto DeclLine = toUnsigned(DWARFDie.findRecursively(DW_AT_decl_line), 0);
This allows us to easily find attribute values in the current DIE only (the first new code above) or in any DW_AT_abstract_origin or DW_AT_specification Dies using the line above. Note that the code line length is shorter and more concise.
Differential Revision: https://reviews.llvm.org/D28581
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291959 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Revert [ARM] Fix ubig32_t read in ARMAttributeParser
Now using support functions to read data instead of trying to
perform casts.
===========================================================
Revert [ARM] Enable objdump to construct triple for ARM
Now that The ARMAttributeParser has been moved into the library,
it has been modified so that it can parse the attributes without
printing them and stores them in a map. ELFObjectFile now queries
the attributes to fill out the architecture details of a provided
triple for 'arm' and 'thumb' targets. llvm-objdump uses this new
functionality.
Subscribers: llvm-commits, samparker, aemerson, mgorny
Differential Revision: https://reviews.llvm.org/D28683
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291911 91177308-0d34-0410-b5e6-96231b3b80d8
Now that The ARMAttributeParser has been moved into the library,
it has been modified so that it can parse the attributes without
printing them and stores them in a map. ELFObjectFile now queries
the attributes to fill out the architecture details of a provided
triple for 'arm' and 'thumb' targets. llvm-objdump uses this new
functionality.
Differential Revision: https://reviews.llvm.org/D28281
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291898 91177308-0d34-0410-b5e6-96231b3b80d8
* Add is{Hot|Cold}CallSite methods
* Fix a bug in isHotBB where it was looking for MD_prof on a return instruction
* Use MD_prof data only if sample profiling was used to collect profiles.
* Add an unit test to ProfileSummaryInfo
Differential Revision: https://reviews.llvm.org/D28584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291878 91177308-0d34-0410-b5e6-96231b3b80d8
r291503, "Lift the 10-type limit for AlignedCharArrayUnion"
r291514, "Fix MSVC build of AlignedCharArrayUnion"
r291515, "Revert the attempt to optimize the constexpr functions. MSVC does not handle this yet"
r291519, "Try once again to fix the MSVC build of AlignedCharArrayUnion"
They has been failing on i686-linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291875 91177308-0d34-0410-b5e6-96231b3b80d8
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291662 91177308-0d34-0410-b5e6-96231b3b80d8
code. If this doesn't work and I can't find someone to help who has MSVC
installed, I'll back everything out I guess. =[
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291661 91177308-0d34-0410-b5e6-96231b3b80d8
arguments much like the CGSCC pass manager.
This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.
An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.
This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.
While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.
I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.
Differential Revision: https://reviews.llvm.org/D28292
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291651 91177308-0d34-0410-b5e6-96231b3b80d8
Support for DW_FORM_implicit_const DWARFv5 feature.
When this form is used attribute value goes to .debug_abbrev section (as SLEB).
As this form would break any debug tool which doesn't support DWARFv5
it is guarded by dwarf version check. Attempt to use this form with
dwarf version <= 4 is considered a fatal error.
Differential Revision: https://reviews.llvm.org/D28456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291599 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases StructurizeCfg updates root node, but dominator info
remains unchanges, it causes crash when expensive checks are enabled.
To cope with this problem a new method was added to DominatorTreeBase
that allows adding new root nodes, it is called in StructurizeCfg to
put dominator tree in sync.
This change fixes PR27488.
Differential Revision: https://reviews.llvm.org/D28114
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291530 91177308-0d34-0410-b5e6-96231b3b80d8
If we split a filename into `Name` and `Prefix`, `Prefix` is at most
145 bytes. We had a bug that didn't split a path correctly. This bug
was pointed out by Rafael in the post commit review.
This patch adds a unit test for TarWriter to verify the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291494 91177308-0d34-0410-b5e6-96231b3b80d8
APICalls allows groups of functions to be composed into an API that can be
registered as a unit with an RPC endpoint. Doing registration on a-whole API
basis (rather than per-function) allows missing API functions to be detected
early.
APICalls also allows Function membership to be tested at compile-time. This
allows clients to write static assertions that functions to be called are
members of registered APIs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291380 91177308-0d34-0410-b5e6-96231b3b80d8
I somehow wrote this fix and then lost it prior to commit. Really sorry
about the noise. This should fix some issues with hacking add_definition
to do things with warning flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291033 91177308-0d34-0410-b5e6-96231b3b80d8
Our copy constructor doesn't explicitly invoke the base class's
constructor, and GCC is (rightly) concerned.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291023 91177308-0d34-0410-b5e6-96231b3b80d8
If this is a problem for anyone (shared_ptr is two pointers in size,
whereas IntrusiveRefCntPtr is 1 - and the ref count control block that
make_shared adds is probably larger than the one int in RefCountedBase)
I'd prefer to address this by adding a lower-overhead version of
shared_ptr (possibly refactoring IntrusiveRefCntPtr into such a thing)
to avoid the intrusiveness - this allows memory ownership to remain
orthogonal to types and at least to me, seems to make code easier to
understand (since no implicit ownership acquisition can happen).
This recommits 291006, reverted in r291007.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291016 91177308-0d34-0410-b5e6-96231b3b80d8
Breaks Clang's use of bitcode. Reverting until I have a fix to go with
it there.
This reverts commit r291006.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291007 91177308-0d34-0410-b5e6-96231b3b80d8
If this is a problem for anyone (shared_ptr is two pointers in size,
whereas IntrusiveRefCntPtr is 1 - and the ref count control block that
make_shared adds is probably larger than the one int in RefCountedBase)
I'd prefer to address this by adding a lower-overhead version of
shared_ptr (possibly refactoring IntrusiveRefCntPtr into such a thing)
to avoid the intrusiveness - this allows memory ownership to remain
orthogonal to types and at least to me, seems to make code easier to
understand (since no implicit ownership acquisition can happen).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291006 91177308-0d34-0410-b5e6-96231b3b80d8
This just removes the usage of llvm::reverse and llvm::seq. That makes
it harder to handle the empty case correctly and so I've also added
a test there.
This is just a shot in the dark at what might be behind the buildbot
failures. I can't reproduce any issues locally including with ASan...
I feel like I'm missing something...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290954 91177308-0d34-0410-b5e6-96231b3b80d8
This is both convenient and more efficient as we can skip any
intermediate reallocation of the vector.
This usage pattern came up in a subsequent patch on the pass manager,
but it seems generically useful so I factored it out and added unittests
here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290952 91177308-0d34-0410-b5e6-96231b3b80d8
This test was testing that we could correctly find the parent of a DIE, but it was actually just testing the special case where a DIE's depth was 1. This corrects that error by adding an extra level into the the DWARF to ensure that we correctly get the parent by looking for the parent with a depth that is 1 less than the current depth.
Differential Revision: https://reviews.llvm.org/D28261
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290918 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure if this was intentional, but today
isGuaranteedToTransferExecutionToSuccessor returns true for readonly and
argmemonly calls that may throw. This commit changes the function to
not implicitly infer nounwind this way.
Even if we eventually specify readonly calls as not throwing,
isGuaranteedToTransferExecutionToSuccessor is not the best place to
infer that. We should instead teach FunctionAttrs or some other such
pass to tag readonly functions / calls as nounwind instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290794 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This class is unnecessary.
Its comment indicated that it was a compile error to allocate an
instance of a class that inherits from RefCountedBaseVPTR on the stack.
This may have been true at one point, but it's not today.
Moreover you really do not want to allocate *any* refcounted object on
the stack, vptrs or not, so if we did have a way to prevent these
objects from being stack-allocated, we'd want to apply it to regular
RefCountedBase too, obviating the need for a separate RefCountedBaseVPTR
class.
It seems that the main way RefCountedBaseVPTR provides safety is by
making its subclass's destructor virtual. This may have been helpful at
one point, but these days clang will emit an error if you define a class
with virtual functions that inherits from RefCountedBase but doesn't
have a virtual destructor.
Reviewers: compnerd, dblaikie
Subscribers: cfe-commits, klimek, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D28162
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290717 91177308-0d34-0410-b5e6-96231b3b80d8
analyses when we're about to break apart an SCC.
We can't wait until after breaking apart the SCC to invalidate things:
1) Which SCC do we then invalidate? All of them?
2) Even if we invalidate all of them, a newly created SCC may not have
a proxy that will convey the invalidation to functions!
Previously we only invalidated one of the SCCs and too late. This led to
stale analyses remaining in the cache. And because the caching strategy
actually works, they would get used and chaos would ensue.
Doing invalidation early is somewhat pessimizing though if we *know*
that the SCC structure won't change. So it turns out that the design to
make the mutation API force the caller to know the *kind* of mutation in
advance was indeed 100% correct and we didn't do enough of it. So this
change also splits two cases of switching a call edge to a ref edge into
two separate APIs so that callers can clearly test for this and take the
easy path without invalidating when appropriate. This is particularly
important in this case as we expect most inlines to be between functions
in separate SCCs and so the common case is that we don't have to so
aggressively invalidate analyses.
The LCG API change in turn needed some basic cleanups and better testing
in its unittest. No interesting functionality changed there other than
more coverage of the returned sequence of SCCs.
While this seems like an obvious improvement over the current state, I'd
like to revisit the core concept of invalidating within the CG-update
layer at all. I'm wondering if we would be better served forcing the
callers to handle the invalidation beforehand in the cases that they
can handle it. An interesting example is when we want to teach the
inliner to *update and preserve* analyses. But we can cross that bridge
when we get there.
With this patch, the new pass manager an build all of the LLVM test
suite at -O3 and everything passes. =D I haven't bootstrapped yet and
I'm sure there are still plenty of bugs, but this gives a nice baseline
so I'm going to increasingly focus on fleshing out the missing
functionality, especially the bits that are just turned off right now in
order to let us establish this baseline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290664 91177308-0d34-0410-b5e6-96231b3b80d8
due to a call cycle.
This actually crashed the ref removal before.
I've added a unittest that covers this kind of interesting graph
structure and mutation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290645 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a warning detected by gcc 6:
warning: cast from type 'const void*' to type 'uint8_t* {aka unsigned char*}' casts away qualifiers [-Wcast-qual]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290618 91177308-0d34-0410-b5e6-96231b3b80d8
that require deferred invalidation.
This handles the other real-world invalidation scenario that we have
cases of: a function analysis which caches references to a module
analysis. We currently do this in the AA aggregation layer and might
well do this in other places as well.
Since this is relative rare, the technique is somewhat more cumbersome.
Analyses need to register themselves when accessing the outer analysis
manager's proxy. This proxy is already necessarily present to allow
access to the outer IR unit's analyses. By registering here we can track
and trigger invalidation when that outer analysis goes away.
To make this work we need to enhance the PreservedAnalyses
infrastructure to support a (slightly) more explicit model for "sets" of
analyses, and allow abandoning a single specific analyses even when
a set covering that analysis is preserved. That allows us to describe
the scenario of preserving all Function analyses *except* for the one
where deferred invalidation has triggered.
We also need to teach the invalidator API to support direct ID calls
instead of always going through a template to dispatch so that we can
just record the ID mapping.
I've introduced testing of all of this both for simple module<->function
cases as well as for more complex cases involving a CGSCC layer.
Much like the previous patch I've not tried to fully update the loop
pass management layer because that layer is due to be heavily reworked
to use similar techniques to the CGSCC to handle updates. As that
happens, we'll have a better testing basis for adding support like this.
Many thanks to both Justin and Sean for the extensive reviews on this to
help bring the API design and documentation into a better state.
Differential Revision: https://reviews.llvm.org/D27198
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290594 91177308-0d34-0410-b5e6-96231b3b80d8
constant expression and to correctly form function reference edges
through them without crashing because one of the operands (the
`BasicBlock` isn't actually a constant despite being an operand of
a constant).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290581 91177308-0d34-0410-b5e6-96231b3b80d8
This recommits r290512 that was reverted when MSVC failed to compile it. Since
then I've played with various approaches using rextester.com (where I was able
to reproduce the failure) and think that I have a solution thanks in part to
the help of Dave Blaikie! It seems MSVC just has a defective `decltype` in this
version. Manually writing out the type seems to do the trick, even though it is
.... quite complicated.
Original commit message:
This allows both defining convenience iterator/range accessors on types
which walk across N different independent ranges within the object, and
more direct and simple usages with range based for loops such as shown
in the unittest. The same facilities are used for both. They end up
quite small and simple as it happens.
I've also switched an iterator on `Module` to use this. I would like to
add another convenience iterator that includes even more sequences as
part of it and seeing this one already present motivated me to actually
abstract it away and introduce a general utility.
Differential Revision: https://reviews.llvm.org/D28093
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290528 91177308-0d34-0410-b5e6-96231b3b80d8
multiple asynchronous RPC calls.
ParallelCallGroup allows multiple asynchronous calls to be dispatched,
and provides a wait method that blocks until all asynchronous calls have
been executed on the remote and all return value handlers run on the
local machine.
This will allow, for example, the JIT client to issue memory allocation calls
for all sections in parallel, then block until all memory has been allocated
on the remote and the allocated addresses registered with the client, at which
point the JIT client can proceed to applying relocations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290523 91177308-0d34-0410-b5e6-96231b3b80d8
This code doesn't work on MSVC for reasons that elude me and I've not
yet covinced a workaround to compile cleanly so reverting for now while
I play with it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290513 91177308-0d34-0410-b5e6-96231b3b80d8
This allows both defining convenience iterator/range accessors on types
which walk across N different independent ranges within the object, and
more direct and simple usages with range based for loops such as shown
in the unittest. The same facilities are used for both. They end up
quite small and simple as it happens.
I've also switched an iterator on `Module` to use this. I would like to
add another convenience iterator that includes even more sequences as
part of it and seeing this one already present motivated me to actually
abstract it away and introduce a general utility.
Differential Revision: https://reviews.llvm.org/D28093
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290512 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes some ASAN unittest failures on FreeBSD. See the
cfe-commits email thread for r290169 for more on those.
According to the LangRef, the allocsize attribute only tells us about
the number of bytes that exist at the memory location pointed to by the
return value of a function. It does not necessarily mean that the
function will only ever allocate. So, we need to be very careful about
treating functions with allocsize as general allocation functions. This
patch makes us fully conservative in this regard, though I suspect that
we have room to be a bit more aggressive if we want.
This has a FIXME that can be fixed by a relatively straightforward
refactor; I just wanted to keep this patch minimal. If this sticks, I'll
come back and fix it in a few days.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290397 91177308-0d34-0410-b5e6-96231b3b80d8
from the old pass manager in the new one.
I'm not trying to support (initially) the numerous options that are
currently available to customize the pass pipeline. If we end up really
wanting them, we can add them later, but I suspect many are no longer
interesting. The simplicity of omitting them will help a lot as we sort
out what the pipeline should look like in the new PM.
I've also documented to the best of my ability *why* each pass or group
of passes is used so that reading the pipeline is more helpful. In many
cases I think we have some questionable choices of ordering and I've
left FIXME comments in place so we know what to come back and revisit
going forward. But for now, I've left it as similar to the current
pipeline as I could.
Lastly, I've had to comment out several places where passes are not
ported to the new pass manager or where the loop pass infrastructure is
not yet ready. I did at least fix a few bugs in the loop pass
infrastructure uncovered by running the full pipeline, but I didn't want
to go too far in this patch -- I'll come back and re-enable these as the
infrastructure comes online. But I'd like to keep the comments in place
because I don't want to lose track of which passes need to be enabled
and where they go.
One thing that seemed like a significant API improvement was to require
that we don't build pipelines for O0. It seems to have no real benefit.
I've also switched back to returning pass managers by value as at this
API layer it feels much more natural to me for composition. But if
others disagree, I'm happy to go back to an output parameter.
I'm not 100% happy with the testing strategy currently, but it seems at
least OK. I may come back and try to refactor or otherwise improve this
in subsequent patches but I wanted to at least get a good starting point
in place.
Differential Revision: https://reviews.llvm.org/D28042
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290325 91177308-0d34-0410-b5e6-96231b3b80d8
In order for the llvm DWARF parser to be used in LLDB we will need to be able to get the parent of a DIE. This patch adds that functionality by changing the DWARFDebugInfoEntry class to store a depth field instead of a sibling index. Using a depth field allows us to easily calculate the sibling and the parent without increasing the size of DWARFDebugInfoEntry.
I tested llvm-dsymutil on a debug version of clang where this fully parses DWARF in over 1200 .o files to verify there was no serious regression in performance.
Added a full suite of unit tests to test this functionality.
Differential Revision: https://reviews.llvm.org/D27995
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290274 91177308-0d34-0410-b5e6-96231b3b80d8
GlobPattern is a class to handle glob pattern matching. Currently
only LLD is using that, but technically that feature is not specific
to linkers, so in this patch I move that file to LLVM.
Differential Revision: https://reviews.llvm.org/D27969
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290212 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290153 91177308-0d34-0410-b5e6-96231b3b80d8
DWARF 4 and later supports encoding the PC as an address or as as offset from the low PC. Clients using DWARFDie should be insulated from how to extract the high PC value. This function takes care of extracting the form value and looking for the correct form.
Differential Revision: https://reviews.llvm.org/D27885
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290131 91177308-0d34-0410-b5e6-96231b3b80d8
unittests/ADT/TwineTest.cpp:106:38: error: field 'Count' will be initialized after base 'llvm::FormatAdapter<int>' [-Werror,-Wreorder]
explicit formatter(int &Count) : Count(Count), FormatAdapter(0) {}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290029 91177308-0d34-0410-b5e6-96231b3b80d8
BPI may trigger signed overflow UB while computing branch probabilities for
cold calls or to unreachables. For example, with our current choice of weights,
we'll crash if there are >= 2^12 branches to an unreachable.
Use a safer BranchProbability constructor which is better at handling fractions
with large denominators.
Changes since the initial commit:
- Use explicit casts to ensure that multiplication operands are 64-bit
ints.
rdar://problem/29368161
Differential Revision: https://reviews.llvm.org/D27862
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290022 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r290016. It breaks this bot, even though the test
passes locally:
http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/32956/
AnalysisTests: /home/bb/ninja-x64-msvc-RA-centos6/llvm-project/llvm/lib/Support/BranchProbability.cpp:52: static llvm::BranchProbability llvm::BranchProbability::getBranchProbability(uint64_t, uint64_t): Assertion `Numerator <= Denominator && "Probability cannot be bigger than 1!"' failed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290019 91177308-0d34-0410-b5e6-96231b3b80d8
BPI may trigger signed overflow UB while computing branch probabilities
for cold calls or to unreachables. For example, with our current choice
of weights, we'll crash if there are >= 2^12 branches to an unreachable.
Use a safer BranchProbability constructor which is better at handling
fractions with large denominators.
rdar://problem/29368161
Differential Revision: https://reviews.llvm.org/D27862
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290016 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289982 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289920 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289902 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This replaces the format member search, which was quite complicated, with a more
direct approach to detecting whether a class should be formatted using the
format-member method. Instead we use a special type llvm::format_adapter, which
every adapter must inherit from. Then the search can be simply implemented with
the is_base_of type trait.
Aside from the simplification, I like this way more because it makes it more
explicit that you are supposed to use this type only for adapter-like
formattings, and the other approach (format_provider overloads) should be used
as a default (a mistake I made when first trying to use this library).
The only slight change in behaviour here is that now choose the format-adapter
branch even if the format member invocation will fail to compile (e.g. because it is a
non-const member function and we are passing a const adapter), whereas
previously we would have gone on to search for format_providers for the type.
However, I think that is actually a good thing, as it probably means the
programmer did something wrong.
Reviewers: zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27679
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289795 91177308-0d34-0410-b5e6-96231b3b80d8
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289756 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Given a flag (-mllvm -reverse-iterate) this patch will enable iteration of SmallPtrSet in reverse order.
The idea is to compile the same source with and without this flag and expect the code to not change.
If there is a difference in codegen then it would mean that the codegen is sensitive to the iteration order of SmallPtrSet.
This is enabled only with LLVM_ENABLE_ABI_BREAKING_CHECKS.
Reviewers: chandlerc, dexonsmith, mehdi_amini
Subscribers: mgorny, emaste, llvm-commits
Differential Revision: https://reviews.llvm.org/D26718
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289619 91177308-0d34-0410-b5e6-96231b3b80d8
Many places pass around a DWARFDebugInfoEntryMinimal and a DWARFUnit. It is easy to get things wrong by using the wrong DWARFUnit with a DWARFDebugInfoEntryMinimal. This patch creates a DWARFDie class that contains the DWARFUnit and DWARFDebugInfoEntryMinimal objects so that they can't get out of sync. All attribute extraction has been moved out of DWARFDebugInfoEntryMinimal and into DWARFDie. DWARFDebugInfoEntryMinimal was also renamed to DWARFDebugInfoEntry.
DWARFDie objects are temporary objects that are used by clients and contain 2 pointers that you always need to have anyway. Keeping them grouped will avoid errors and simplify many of the attribute extracting APIs by not having to pass in a DWARFUnit.
Differential Revision: https://reviews.llvm.org/D27634
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289565 91177308-0d34-0410-b5e6-96231b3b80d8
StringLiteral is a wrapper around a string literal useful for
replacing global tables of char arrays with global tables of
StringRefs that can initialized in a constexpr context, avoiding
the invocation of a global constructor.
Differential Revision: https://reviews.llvm.org/D27686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289551 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I looked at libgcc's implementation (which is based on the paper,
Software for Doubled-Precision Floating-Point Computations", by Seppo Linnainmaa,
ACM TOMS vol 7 no 3, September 1981, pages 272-283.) and made it generic to
arbitrary IEEE floats.
Differential Revision: https://reviews.llvm.org/D26817
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289472 91177308-0d34-0410-b5e6-96231b3b80d8
Reverts r289412. It caused an OOB PHI operand access in instcombine when
ASan is enabled. Reduction in progress.
Also reverts "[SCEVExpander] Add a test case related to r289412"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289453 91177308-0d34-0410-b5e6-96231b3b80d8
SCEVExpand computes the insertion point for the components of a SCEV to be code
generated. When it comes to generating code for a division, SCEVexpand would
not be able to check (at compilation time) all the conditions necessary to avoid
a division by zero. The patch disables hoisting of expressions containing
divisions by anything other than non-zero constants in order to avoid hoisting
these expressions past conditions that should hold before doing the division.
The patch passes check-all on x86_64-linux.
Differential Revision: https://reviews.llvm.org/D27216
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289412 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Fix a corner case in `MDNode::getMostGenericTBAA` where we can sometimes
generate invalid TBAA metadata.
Reviewers: chandlerc, hfinkel, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26635
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289403 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This never really got implemented, and was very hard to test before
a lot of the refactoring changes to make things more robust. But now we
can test it thoroughly and cleanly, especially at the CGSCC level.
The core idea is that when an inner analysis manager proxy receives the
invalidation event for the outer IR unit, it needs to walk the inner IR
units and propagate it to the inner analysis manager for each of those
units. For example, each function in the SCC needs to get an
invalidation event when the SCC gets one.
The function / module interaction is somewhat boring here. This really
becomes interesting in the face of analysis-backed IR units. This patch
effectively handles all of the CGSCC layer's needs -- both invalidating
SCC analysis and invalidating function analysis when an SCC gets
invalidated.
However, this second aspect doesn't really handle the
LoopAnalysisManager well at this point. That one will need some change
of design in order to fully integrate, because unlike the call graph,
the entire function behind a LoopAnalysis's results can vanish out from
under us, and we won't even have a cached API to access. I'd like to try
to separate solving the loop problems into a subsequent patch though in
order to keep this more focused so I've adapted them to the API and
updated the tests that immediately fail, but I've not added the level of
testing and validation at that layer that I have at the CGSCC layer.
An important aspect of this change is that the proxy for the
FunctionAnalysisManager at the SCC pass layer doesn't work like the
other proxies for an inner IR unit as it doesn't directly manage the
FunctionAnalysisManager and invalidation or clearing of it. This would
create an ever worsening problem of dual ownership of this
responsibility, split between the module-level FAM proxy and this
SCC-level FAM proxy. Instead, this patch changes the SCC-level FAM proxy
to work in terms of the module-level proxy and defer to it to handle
much of the updates. It only does SCC-specific invalidation. This will
become more important in subsequent patches that support more complex
invalidaiton scenarios.
Reviewers: jlebar
Subscribers: mehdi_amini, mcrosier, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D27197
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289317 91177308-0d34-0410-b5e6-96231b3b80d8
The dwarfgen::Generator::StringPool was in a unique_ptr but it was owned by the Allocator member variable so it was being free twice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289070 91177308-0d34-0410-b5e6-96231b3b80d8
I wanted to use the "not" keyword to make sure it does not get lost in between
other checks. MSVC does not like that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289041 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The existing detection of a format member function has a couple of deficiencies:
- the member function does not get detected if one calls formatv with an lvalue,
because the template parameter gets deduced as T&, which fails the is_class
check.
- it also did not work if the function was called with a const variable because
the template parameter would get deduced as const T&, again failing the
is_class check.
This fixes the problem by stripping the references in the uses_format_member
template, to make sure the type is correctly detected as class. It also provides
specializations of the has_FormatMember template for const and non-const members
of the types in order to enable declaring the format member as a "const"
function. I have added tests that verify that formatv can be now called in these
scenarios. As some scenarios could not be verified at runtime (e.g. making sure
that calling a non-const format member on a const object does *not* compile), I
have also added some static_asserts which test the behaviour of the template
classes used internally by formatv().
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27525
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289040 91177308-0d34-0410-b5e6-96231b3b80d8
The only tests we have for the DWARF parser are the tests that use llvm-dwarfdump and expect output from textual dumps.
More DWARF parser modification are coming in the next few weeks and I wanted to add tests that can verify that we can encode and decode all form types, as well as test some other basic DWARF APIs where we ask DIE objects for their children and siblings.
DwarfGenerator.cpp was added in the lib/CodeGen directory. This file contains the code necessary to easily create DWARF for tests:
dwarfgen::Generator DG;
Triple Triple("x86_64--");
bool success = DG.init(Triple, Version);
if (!success)
return;
dwarfgen::CompileUnit &CU = DG.addCompileUnit();
dwarfgen::DIE CUDie = CU.getUnitDIE();
CUDie.addAttribute(DW_AT_name, DW_FORM_strp, "/tmp/main.c");
CUDie.addAttribute(DW_AT_language, DW_FORM_data2, DW_LANG_C);
dwarfgen::DIE SubprogramDie = CUDie.addChild(DW_TAG_subprogram);
SubprogramDie.addAttribute(DW_AT_name, DW_FORM_strp, "main");
SubprogramDie.addAttribute(DW_AT_low_pc, DW_FORM_addr, 0x1000U);
SubprogramDie.addAttribute(DW_AT_high_pc, DW_FORM_addr, 0x2000U);
dwarfgen::DIE IntDie = CUDie.addChild(DW_TAG_base_type);
IntDie.addAttribute(DW_AT_name, DW_FORM_strp, "int");
IntDie.addAttribute(DW_AT_encoding, DW_FORM_data1, DW_ATE_signed);
IntDie.addAttribute(DW_AT_byte_size, DW_FORM_data1, 4);
dwarfgen::DIE ArgcDie = SubprogramDie.addChild(DW_TAG_formal_parameter);
ArgcDie.addAttribute(DW_AT_name, DW_FORM_strp, "argc");
// ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref4, IntDie);
ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref_addr, IntDie);
StringRef FileBytes = DG.generate();
MemoryBufferRef FileBuffer(FileBytes, "dwarf");
auto Obj = object::ObjectFile::createObjectFile(FileBuffer);
EXPECT_TRUE((bool)Obj);
DWARFContextInMemory DwarfContext(*Obj.get());
This code is backed by the AsmPrinter code that emits DWARF for the actual compiler.
While adding unit tests it was discovered that DIEValue that used DIEEntry as their values had bugs where DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref8, and DW_FORM_ref_udata forms were not supported. These are all now supported. Added support for DW_FORM_string so we can emit inlined C strings.
Centralized the code to unique abbreviations into a new DIEAbbrevSet class and made both the dwarfgen::Generator and the llvm::DwarfFile classes use the new class.
Fixed comments in the llvm::DIE class so that the Offset is known to be the compile/type unit offset.
DIEInteger now supports more DW_FORM values.
There are also unit tests that cover:
Encoding and decoding all form types and values
Encoding and decoding all reference types (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata, DW_FORM_ref_addr) including cross compile unit references with that go forward one compile unit and backward on compile unit.
Differential Revision: https://reviews.llvm.org/D27326
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289010 91177308-0d34-0410-b5e6-96231b3b80d8
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288683 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a follow up to r288303, where I have introduced TrigramIndex
to speed up SpecialCaseList for the cases when all rules are
simple wildcards, like *hello*wor.d*.
Here, I add support for escaping, so that it's possible to
specify rules like *c\+\+abi*.
Reviewers: pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27318
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288553 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
it's often the case when the rules in the SpecialCaseList
are of the form hel.o*bar. That gives us a chance to build
trigram index to quickly discard 99% of inputs without
running a full regex. A similar idea was used in Google Code Search
as described in the blog post:
https://swtch.com/~rsc/regexp/regexp4.html
The check is defeated, if there's at least one regex
more complicated than that. In this case, all inputs
will go through the regex. That said, the real-world
rules are often simple or can be simplied. That considerably
speeds up compiling Chromium with CFI and UBSan.
As measured on Chromium's content_message_generator.cc:
before, CFI: 44 s
after, CFI: 23 s
after, CFI, no blacklist: 23 s (~1% slower, but 3 runs were unable to show the difference)
after, regular compilation to bitcode: 23 s
Reviewers: pcc
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D27188
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288303 91177308-0d34-0410-b5e6-96231b3b80d8
This is consistent with the header (after r288087) and fixes the
test for the configuration:
-DLLVM_ENABLE_ASSERTIONS=ON -DLLVM_ABI_BREAKING_CHECKS=FORCE_OFF
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288196 91177308-0d34-0410-b5e6-96231b3b80d8
accept an Invalidator that allows them to invalidate themselves if their
dependencies are in turn invalidated.
Rather than recording the dependency graph ahead of time when analysis
get results from other analyses, this simply lets each result trigger
the immediate invalidation of any analyses they actually depend on. They
do this in a way that has three nice properties:
1) They don't have to handle transitive dependencies because the
infrastructure will recurse for them.
2) The invalidate methods are still called only once. We just
dynamically discover the necessary topological ordering, everything
is memoized nicely.
3) The infrastructure still provides a default implementation and can
access it so that only analyses which have dependencies need to do
anything custom.
To make this work at all, the invalidation logic also has to defer the
deletion of the result objects themselves so that they can remain alive
until we have collected the complete set of results to invalidate.
A unittest is added here that has exactly the dependency pattern we are
concerned with. It hit the use-after-free described by Sean in much
detail in the long thread about analysis invalidation before this
change, and even in an intermediate form of this change where we failed
to defer the deletion of the result objects.
There is an important problem with doing dependency invalidation that
*isn't* solved here: we don't *enforce* that results correctly
invalidate all the analyses whose results they depend on.
I actually looked at what it would take to do that, and it isn't as hard
as I had thought but the complexity it introduces seems very likely to
outweigh the benefit. The technique would be to provide a base class for
an analysis result that would be populated with other results, and
automatically provide the invalidate method which immediately does the
correct thing. This approach has some nice pros IMO:
- Handles the case we care about and nothing else: only *results*
that depend on other analyses trigger extra invalidation.
- Localized to the result rather than centralized in the analysis
manager.
- Ties the storage of the reference to another result to the triggering
of the invalidation of that analysis.
- Still supports extending invalidation in customized ways.
But the down sides here are:
- Very heavy-weight meta-programming is needed to provide this base
class.
- Requires a pretty awful API for accessing the dependencies.
Ultimately, I fear it will not pull its weight. But we can re-evaluate
this at any point if we start discovering consistent problems where the
invalidation and dependencies get out of sync. It will fit as a clean
layer on top of the facilities in this patch that we can add if and when
we need it.
Note that I'm not really thrilled with the names for these APIs... The
name "Invalidator" seems ok but not great. The method name "invalidate"
also. In review some improvements were suggested, but they really need
*other* uses of these terms to be updated as well so I'm going to do
that in a follow-up commit.
I'm working on the actual fixes to various analyses that need to use
these, but I want to try to get tests for each of them so we don't
regress. And those changes are seperable and obvious so once this goes
in I should be able to roll them out throughout LLVM.
Many thanks to Sean, Justin, and others for help reviewing here.
Differential Revision: https://reviews.llvm.org/D23738
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288077 91177308-0d34-0410-b5e6-96231b3b80d8
Some scanner errors were not checked and reported by the parser.
Fix PR30934. Recommit r288014 after fixing unittest.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D26419
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288071 91177308-0d34-0410-b5e6-96231b3b80d8
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.
This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.
However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.
And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.
This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.
We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.
Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!
While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.
Differential Revision: https://reviews.llvm.org/D27031
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287783 91177308-0d34-0410-b5e6-96231b3b80d8
This mostly gives us nice unittesting of the predicates themselves. I'll
start using them further in subsequent commits to help test the actual
operations performed on the graph.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287698 91177308-0d34-0410-b5e6-96231b3b80d8
The previously used "names" are rather descriptions (they use multiple
words and contain spaces), use short programming language identifier
like strings for the "names" which should be used when exporting to
machine parseable formats.
Also removed a unused TimerGroup from Hexxagon.
Differential Revision: https://reviews.llvm.org/D25583
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287369 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time.
Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter.
Reviewers: sanjoy
Subscribers: mzolotukhin, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D26389
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287232 91177308-0d34-0410-b5e6-96231b3b80d8
This unit test infinite-looped on s390x due to a thread_yield being optimized
out. I've updated the QueueChannel class (where thread_yield was called) to use
a condition variable instead. This should cause the unit test to behave
correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287121 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes, llvm-symbolizer gives wrong results due to incorrect sizes of some symbols. The reason for that was an incorrectly sorted array in computeSymbolSizes. The comparison function used subtraction of unsigned types, which is incorrect. Let's change this to return explicit -1 or 1.
Differential Revision: https://reviews.llvm.org/D26537
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287028 91177308-0d34-0410-b5e6-96231b3b80d8
This broke s390x due to a bug in the QueueChannel implementation that led to it
infinite-looping. Disabling it while I look into a fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286917 91177308-0d34-0410-b5e6-96231b3b80d8
return types.
This class allows user provided handlers to return either error-wrapped types
or plain types. In the latter case, the plain type is wrapped with a success
value of Error or Expected<T> type to fit it into the rest of the serialization
machinery.
This patch allows us to remove the RPC unit-test workaround added in r286646.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286701 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a new type-safe general purpose formatting
library. It provides compile-time type safety, does not require
a format specifier (since the type is deduced), and provides
mechanisms for extending the format capability to user defined
types, and overriding the formatting behavior for existing types.
This patch additionally adds documentation for the API to the
LLVM programmer's manual.
Mailing List Thread:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/105836.html
Differential Revision: https://reviews.llvm.org/D25587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286682 91177308-0d34-0410-b5e6-96231b3b80d8
return type.
This should be fixed permanently by having the RPCUtils header recognize the
ErrorSuccess type. I'll commit that in a follow up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286646 91177308-0d34-0410-b5e6-96231b3b80d8
This is pure refactoring. NFC.
This change moves the FunctionComparator (together with the GlobalNumberState
utility) in to a separate file so that it can be used by other passes.
For example, the SwiftMergeFunctions pass in the Swift compiler:
https://github.com/apple/swift/blob/master/lib/LLVMPasses/LLVMMergeFunctions.cpp
Details of the change:
*) The big part is just moving code out of MergeFunctions.cpp into FunctionComparator.h/cpp
*) Make FunctionComparator member functions protected (instead of private)
so that a derived comparator class can use them.
Following refactoring helps to share code between the base FunctionComparator
class and a derived class:
*) Add a beginCompare() function
*) Move some basic function property comparisons into a separate function compareSignature()
*) Do the GEP comparison inside cmpOperations() which now has a new
needToCmpOperands reference parameter
https://reviews.llvm.org/D25385
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286632 91177308-0d34-0410-b5e6-96231b3b80d8
(1) Add support for function key negotiation.
The previous version of the RPC required both sides to maintain the same
enumeration for functions in the API. This means that any version skew between
the client and server would result in communication failure.
With this version of the patch functions (and serializable types) are defined
with string names, and the derived function signature strings are used to
negotiate the actual function keys (which are used for efficient call
serialization). This allows clients to connect to any server that supports a
superset of the API (based on the function signatures it supports).
(2) Add a callAsync primitive.
The callAsync primitive can be used to install a return value handler that will
run as soon as the RPC function's return value is sent back from the remote.
(3) Launch policies for RPC function handlers.
The new addHandler method, which installs handlers for RPC functions, takes two
arguments: (1) the handler itself, and (2) an optional "launch policy". When the
RPC function is called, the launch policy (if present) is invoked to actually
launch the handler. This allows the handler to be spawned on a background
thread, or added to a work list. If no launch policy is used, the handler is run
on the server thread itself. This should only be used for short-running
handlers, or entirely synchronous RPC APIs.
(4) Zero cost cross type serialization.
You can now define serialization from any type to a different "wire" type. For
example, this allows you to call an RPC function that's defined to take a
std::string while passing a StringRef argument. If a serializer from StringRef
to std::string has been defined for the channel type this will be used to
serialize the argument without having to construct a std::string instance.
This allows buffer reference types to be used as arguments to RPC calls without
requiring a copy of the buffer to be made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286620 91177308-0d34-0410-b5e6-96231b3b80d8
In preparation for a follow on patch that improves DWARF parsing speed, clean up DWARFFormValue so that we have can get the fixed byte size of a form value given a DWARFUnit or given the version, address byte size and dwarf32/64.
This patch cleans up code so that everyone is using one of the new DWARFFormValue functions:
static Optional<uint8_t> DWARFFormValue::getFixedByteSize(dwarf::Form Form, const DWARFUnit *U = nullptr);
static Optional<uint8_t> DWARFFormValue::getFixedByteSize(dwarf::Form Form, uint16_t Version, uint8_t AddrSize, bool Dwarf32);
This patch changes DWARFFormValue::skipValue() to rely on the output of DWARFFormValue::getFixedByteSize(...) instead of duplicating the code in each function. This will reduce the number of changes we need to make to DWARF to fewer places in DWARFFormValue when we add support for new form.
This patch also starts to support DWARF64 so that we can get correct byte sizes for forms that vary according the DWARF 32/64.
To reduce the code duplication a new FormSizeHelper pure virtual class was created that can be created as a FormSizeHelperDWARFUnit when you have a DWARFUnit, or FormSizeHelperManual where you manually specify the DWARF version, address byte size and DWARF32/DWARF64. There is now a single implementation of a function that gets the fixed byte size (instead of two where one took a DWARFUnit and one took the DWARF version, address byte size and DWARFFormat enum) and one function to skip the form values.
https://reviews.llvm.org/D26526
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286597 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286566 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it possible to indent a binary blob by a certain
number of bytes, and also makes some things more idiomatic.
Finally, it integrates this binary blob formatter into ScopedPrinter
which used to have its own implementation of this algorithm.
Differential Revision: https://reviews.llvm.org/D26477
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286495 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We've had support for auto upgrading old style scalar TBAA access
metadata tags into the "new" struct path aware TBAA metadata for 3 years
now. The only way to actually generate old style TBAA was explicitly
through the IRBuilder API. I think this is a good time for dropping
support for old style scalar TBAA.
I'm not removing support for textual or bitcode upgrade -- if you have
IR with the old style scalar TBAA tags that go through the AsmParser orf
the bitcode parser before LLVM sees them, they will keep working as
usual.
Note:
%val = load i32, i32* %ptr, !tbaa !N
!N = < scalar tbaa node >
is equivalent to
%val = load i32, i32* %ptr, !tbaa !M
!N = < scalar tbaa node >
!M = !{!N, !N, 0}
Reviewers: manmanren, chandlerc, sunfish
Subscribers: mcrosier, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26229
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286291 91177308-0d34-0410-b5e6-96231b3b80d8
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.
The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.
Differential Revision: https://reviews.llvm.org/D26384
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286214 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Fixes PR30869.
In D25977 I meant to change all functions that care about lifetime. I
changed constructors, factory functions, but I missed member/free
functions that return new instances. This patch changes them.
Reviewers: hfinkel, kbarton, echristo, joerg
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D26269
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286060 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
These functions currently require that the new closed interval has a length of
at least 2. They also currently permit empty half-open intervals. This patch
defines nonEmpty in each traits structure and uses it to correct the
implementations of setStart and setStop.
Reviewers: stoklund, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26064
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285957 91177308-0d34-0410-b5e6-96231b3b80d8
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106595.html
This change also fixes an API oddity where BitstreamCursor::Read() would
return zero for the first read past the end of the bitstream, but would
report_fatal_error for subsequent reads. Now we always report_fatal_error
for all reads past the end. Updated clients to check for the end of the
bitstream before reading from it.
I also needed to add padding to the invalid bitcode tests in
test/Bitcode/. This is because the streaming interface was not checking that
the file size is a multiple of 4.
Differential Revision: https://reviews.llvm.org/D26219
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285773 91177308-0d34-0410-b5e6-96231b3b80d8
If a response file included by construct @file itself includes a response file
and that file is specified by relative file name, current behavior is to resolve
the name relative to the current working directory. The change adds additional
flag to ExpandResponseFiles that may be used to resolve nested response file
names relative to including file. With the new mode a set of related response
files may be kept together and reference each other with short position
independent names.
Differential Revision: https://reviews.llvm.org/D24917
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285675 91177308-0d34-0410-b5e6-96231b3b80d8
This resubmits r284436 and r284437, which were reverted in
r284462 as they were breaking the AArch64 buildbot.
The breakage on AArch64 turned out to be a miscompile which is
still not fixed, but is actively tracked at llvm.org/pr30748.
This resubmission re-writes the code in a way so as to make the
miscompile not happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285483 91177308-0d34-0410-b5e6-96231b3b80d8
Change type of some missed DebugInfo-related alignment variables,
that are still uint64_t, to uint32_t.
Original change introduced in r284482.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285242 91177308-0d34-0410-b5e6-96231b3b80d8
On i386 alignof(double) = 8 is not the same as alignof(struct { double
}) = 4. This used to be not an issue because the old implementation
always measured alignment inside of structs. Wrap a dummy struct around
the test to avoid this issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284812 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This allows us to mark when uses have been optimized.
This lets us avoid rewalking (IE when people call getClobberingAccess on everything), and also
enables us to later relax the requirement of use optimization during updates with less cost.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25172
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284771 91177308-0d34-0410-b5e6-96231b3b80d8
Also clean up the legacy hacks for AlignedCharArray. I'm keeping
LLVM_ALIGNAS alive for a bit longer because GCC 4.8.0 (which we still
support apparently) shipped a buggy alignas(). All other supported
compilers have a working alignas.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284736 91177308-0d34-0410-b5e6-96231b3b80d8