of different register classes. e.g.
%reg1048:3<def> = EXTRACT_SUBREG %RAX<kill>, 3
Where %reg1048 is a GR32 register. This is not impossible to handle, but it is
pretty hard and very rare.
This should unbreak the dragonegg builder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102672 91177308-0d34-0410-b5e6-96231b3b80d8
update them. Computing kill flags is notoriously difficult, and the coalescer
would get it wrong sometimes, and it would completely skip physical registers.
Now we simply remove kill flags based on the live intervals after coalescing.
This is a few percent slower, but now we get correct kill flags for physical
registers after coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102510 91177308-0d34-0410-b5e6-96231b3b80d8
Remove ugly hack that aborted the coalescer before using N^2 time.
This affects functions with very complicated live intervals for physical
registers, i.e. functions with thousands of function calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98776 91177308-0d34-0410-b5e6-96231b3b80d8
cl = EXTRACT_SUBREG reg1024, 1, is overly conservative. It should check
for overlaps of vr's live interval with the super registers of the
physical register (ECX in this case) and let JoinIntervals() handle checking
the coalescing feasibility against the physical register (cl in this case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98251 91177308-0d34-0410-b5e6-96231b3b80d8
physreg becomes ridiculously high.
std::upper_bound may be log(N), but for sufficiently large live intervals, it
becomes log(N)*cachemiss = a long long time.
This patch improves coalescer time by 4500x for a function with 20000
function calls. The generated code is different, but not significantly worse -
the allocator hints are almost as good as physreg coalescing anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98023 91177308-0d34-0410-b5e6-96231b3b80d8
When coalescing with a physreg, remember to add imp-def and imp-kill when
dealing with sub-registers.
Also fix a related bug in VirtRegRewriter where substitutePhysReg may
reallocate the operand list on an instruction and invalidate the reg_iterator.
This can happen when a register is mentioned twice on the same instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96072 91177308-0d34-0410-b5e6-96231b3b80d8
register coalescing. This fixes many crashes and
places where debug info affects codegen (when
dbg.value is lowered to machine instructions, which
it isn't yet in TOT).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95739 91177308-0d34-0410-b5e6-96231b3b80d8
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95687 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes an in-place update bug where code inserted at the end of basic blocks may not be covered by existing intervals which were live across the entire block. It is also consistent with the way ranges are specified for live intervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91859 91177308-0d34-0410-b5e6-96231b3b80d8
- A valno should be set HasRedefByEC if there is an early clobber def in the middle of its live ranges. It should not be set if the def of the valno is defined by an early clobber.
- If a physical register def is tied to an use and it's an early clobber, it just means the HasRedefByEC is set since it's still one continuous live range.
- Add a couple of missing checks for HasRedefByEC in the coalescer. In general, it should not coalesce a vr with a physical register if the physical register has a early clobber def somewhere. This is overly conservative but that's the price for using such a nasty inline asm "feature".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90269 91177308-0d34-0410-b5e6-96231b3b80d8
This means that well connected blocks are copy coalesced before the less connected blocks. Connected blocks are more difficult to
coalesce because intervals are more complicated, so handling them first gives a greater chance of success.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90194 91177308-0d34-0410-b5e6-96231b3b80d8
- If destination is a physical register and it has a subreg index, use the
sub-register instead.
This fixes PR5423.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88745 91177308-0d34-0410-b5e6-96231b3b80d8
and extract_subreg as a "copy" that defines a valno.
Also fixes a typo. These two issues prevent a simple subreg coalescing from
happening before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86022 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a new pass, SlotIndexes, which is responsible for numbering
instructions for register allocation (and other clients). SlotIndexes numbering
is designed to match the existing scheme, so this patch should not cause any
changes in the generated code.
For consistency, and to avoid naming confusion, LiveIndex has been renamed
SlotIndex.
The processImplicitDefs method of the LiveIntervals analysis has been moved
into its own pass so that it can be run prior to SlotIndexes. This was
necessary to match the existing numbering scheme.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85979 91177308-0d34-0410-b5e6-96231b3b80d8
--- Reverse-merging r85338 into '.':
U lib/CodeGen/SimpleRegisterCoalescing.cpp
U lib/CodeGen/SimpleRegisterCoalescing.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85454 91177308-0d34-0410-b5e6-96231b3b80d8
bootstrapping. It's not safe to leave identity subreg_to_reg and insert_subreg
around.
- Relax register scavenging to allow use of partially "not-live" registers. It's
common for targets to operate on registers where the top bits are undef. e.g.
s0 =
d0 = insert_subreg d0<undef>, s0, 1
...
= d0
When the insert_subreg is eliminated by the coalescer, the scavenger used to
complain. The previous fix was to keep to insert_subreg around. But that's
brittle and it's overly conservative when we want to use the scavenger to
allocate registers. It's actually legal and desirable for other instructions
to use the "undef" part of d0. e.g.
s0 =
d0 = insert_subreg d0<undef>, s0, 1
...
s1 =
= s1
= d0
We probably need add a "partial-undef" marker on machine operand so the
machine verifier would not complain.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85091 91177308-0d34-0410-b5e6-96231b3b80d8
used elsewhere - an exit block is a block outside the loop branched to
from within the loop. An exiting block is a block inside the loop that
branches out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85019 91177308-0d34-0410-b5e6-96231b3b80d8