In an IR symbol table I would expect the comdats to be represented as:
- A table of strings, one for each comdat name.
- Each symbol has an optional index into that table.
The natural api for accessing that would be
InputFile:
ArrayRef<StringRef> getComdatTable() const;
Symbol:
int getComdatIndex() const;
This patch implements an API as close to that as possible. The
implementation on top of the current IRObjectFile is a bit hackish,
but should map just fine over a symbol table and is very convenient to
use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285061 91177308-0d34-0410-b5e6-96231b3b80d8
When we load coverage data from multiple objects, we don't have a way to
attribute a source object to a function record. Printing out the object
filename next to the source filename is already not very useful: soon,
it'll actually become misleading. Stop printing out the filename now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285043 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Most of the changes are very straight-forward. The only choice I had to make was
to use second-precision time points in the Archive classes. I did this because
the archive files use that precision in the on-disk representation anyway.
Reviewers: rafael, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25773
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284974 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a follow-up to D25416. It removes all usages of TimeValue from
llvm/Support library (except for the actual TimeValue declaration), and replaces
them with appropriate usages of std::chrono. To facilitate this, I have added
small utility functions for converting time points and durations into appropriate
OS-specific types (FILETIME, struct timespec, ...).
Reviewers: zturner, mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25730
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284966 91177308-0d34-0410-b5e6-96231b3b80d8
Fix the implementation of OptReportLocationInfo's operator < so that contexts
with different unroll counts are reported separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284957 91177308-0d34-0410-b5e6-96231b3b80d8
iterating over an archive with object and non-object members that
would cause an Abort because to was not calling consumeError()
when the code was wanting to ignore a non-object file.
Found by Justin Bogner!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284867 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This adds support for dumping the globals stream from PDB files using llvm-pdbdump, similar to the support we have for the publics stream.
Reviewers: ruiu, zturner
Subscribers: beanz, mgorny, modocache
Differential Revision: https://reviews.llvm.org/D25801
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284861 91177308-0d34-0410-b5e6-96231b3b80d8
the ARM_THREAD_STATE in the same format as
otool-classic(1) on darwin.
Also remove an extra space in printing the initprot to make
the output match otool-classic(1) on darwin.
rdar://28851457
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284852 91177308-0d34-0410-b5e6-96231b3b80d8
This was all using ArrayRef<>s before which presents a problem
when you want to serialize to or deserialize from an actual
PDB stream. An ArrayRef<> is really just a special case of
what can be handled with StreamInterface though (e.g. by using
a ByteStream), so changing this to use StreamInterface allows
us to plug in a PDB stream and get all the record serialization
and deserialization for free on a MappedBlockStream.
Subsequent patches will try to remove TypeTableBuilder and
TypeRecordBuilder in favor of class that operate on
Streams as well, which should allow us to completely merge
the reading and writing codepaths for both types and symbols.
Differential Revision: https://reviews.llvm.org/D25831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284762 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have dropped MSVC 2013, all supported compilers support
noexcept and we can drop this portability macro.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284672 91177308-0d34-0410-b5e6-96231b3b80d8
Profile runtime can generate an empty raw profile (when there is no function in
the shared library). This empty profile is treated as a text format profile. A
test format profile without the flag of "#IR" is thought to be a clang
generated profile. So in llvm profile merging, we will get a bogus warning of
"Merge IR generated profile with Clang generated profile."
The fix here is to skip the empty profile (when the buffer size is 0) for
profile merge.
Reviewers: vsk, davidxl
Differential Revision: http://reviews.llvm.org/D25687
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284659 91177308-0d34-0410-b5e6-96231b3b80d8
Initializing a ThreadPool with ThreadCount = 1 spawns a thread even
though we don't need to. This is at least slower than it needs to be,
and at worst may somehow be exacerbating PR30735 (llvm-cov times out
on ARM bots).
As a follow-up, I'll try to add logic to llvm::ThreadPool to avoid
spawning a thread when ThreadCount = 1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284621 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Changes default backend parallelism from thread::hardware_concurrency to
the new llvm::heavyweight_hardware_concurrency, which for X86 Linux
defaults to the number of physical cores (and will fall back to
thread::hardware_concurrency otherwise). This avoid oversubscribing
the physical cores using hyperthreading.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25775
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284618 91177308-0d34-0410-b5e6-96231b3b80d8
This is just a quick utility handy for getting rough summaries of types
in a given object or dwo file. I've been using it to investigate the
amount of type info redundancy across a project build, for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284537 91177308-0d34-0410-b5e6-96231b3b80d8
debugger.
When bugpoint hacks at a testcase it may at one point create illegal
debug info metadata that won't even pass the Verifier. A bugpoint
*driver* built with assertions should not assert on it, but reject the
malformed intermediate step and continue to do its job.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284490 91177308-0d34-0410-b5e6-96231b3b80d8
Module inline asm was always being linked/concatenated
when running the IRLinker. This is correct for full LTO but not when
we are importing for ThinLTO, as it can result in multiply defined
symbols when the module asm defines a global symbol.
In order to test with llvm-lto2, I had to work around PR30396,
where a symbol that is defined in module assembly but defined in the
LLVM IR appears twice. Added workaround to llvm-lto2 with a FIXME.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25359
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284030 91177308-0d34-0410-b5e6-96231b3b80d8
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283671 91177308-0d34-0410-b5e6-96231b3b80d8
We need to add an entry in the combined-index for modules that have
a hash but otherwise empty summary, this is needed so that we can
get the hash for the module.
Also, if no entry is present in the combined index for a module, we
need to skip it when trying to compute a cache entry.
Differential Revision: https://reviews.llvm.org/D25300
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283654 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first step towards round-tripping symbol information,
and thusly being able to write symbol information to a PDB.
This patch writes the symbol information for each compiland to
the Yaml when running in pdb2yaml mode. There's still some loose
ends, such as what to do about relocations (necessary in order to
print linkage names), how to print enums with friendly names, and
how to give the dumper access to the StringTable, but this is a
good first start.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283641 91177308-0d34-0410-b5e6-96231b3b80d8
Because screen space is precious, if an optimization (vectorization, for
example) never happens, don't leave empty space for the associated markers on
every line of the output. This makes the output much more compact, and allows
for the later inclusion of markers for more (although perhaps rare)
optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283626 91177308-0d34-0410-b5e6-96231b3b80d8
Type visitor code had already been refactored previously to
decouple the visitor and the visitor callback interface. This
was necessary for having the flexibility to visit in different
ways (for example, dumping to yaml, reading from yaml, dumping
to ScopedPrinter, etc).
This patch merely implements the same visitation pattern for
symbol records that has already been implemented for type records.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283609 91177308-0d34-0410-b5e6-96231b3b80d8
In the left part of the reports, we have things like U<number>; if some of
these numbers use more digits than others, we don't want a space in between the
U and the start of the number. Instead, the space should come afterward. This
way it is clear that the number goes with the U and not any other optimization
indicator that might come later on the line.
Tests committed in r283518.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283519 91177308-0d34-0410-b5e6-96231b3b80d8
As this is intended to be a user-facing option, -no-demangle seems much better
than -demangle=0. Add testing for the option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283516 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283473 91177308-0d34-0410-b5e6-96231b3b80d8
When there are multiple optimizations on one line, record the vectorization
factors, etc. correctly (instead of incorrectly substituting default values).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283443 91177308-0d34-0410-b5e6-96231b3b80d8
How code is optimized sometimes, perhaps often, depends on the context into
which it was inlined. This change allows llvm-opt-report to track the
differences between the optimizations performed, or not, in different contexts,
and when these differ, display those differences.
For example, this code:
$ cat /tmp/q.cpp
void bar();
void foo(int n) {
for (int i = 0; i < n; ++i)
bar();
}
void quack() {
foo(4);
}
void quack2() {
foo(4);
}
will now produce this report:
< /home/hfinkel/src/llvm/test/tools/llvm-opt-report/Inputs/q.cpp
2 | void bar();
3 | void foo(int n) {
[[
> foo(int):
4 | for (int i = 0; i < n; ++i)
> quack(), quack2():
4 U4 | for (int i = 0; i < n; ++i)
]]
5 | bar();
6 | }
7 |
8 | void quack() {
9 I | foo(4);
10 | }
11 |
12 | void quack2() {
13 I | foo(4);
14 | }
15 |
Note that the tool has demangled the function names, and grouped the reports
associated with line 4. This shows that the loop on line 4 was unrolled by a
factor of 4 when inlined into the functions quack() and quack2(), but not in
the function foo(int) itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283402 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM now has the ability to record information from optimization remarks in a
machine-consumable YAML file for later analysis. This can be enabled in opt
(see r282539), and D25225 adds a Clang flag to do the same. This patch adds
llvm-opt-report, a tool to generate basic optimization "listing" files
(annotated sources with information about what optimizations were performed)
from one of these YAML inputs.
D19678 proposed to add this capability directly to Clang, but this more-general
YAML-based infrastructure was the direction we decided upon in that review
thread.
For this optimization report, I focused on making the output as succinct as
possible while providing information on inlining and loop transformations. The
goal here is that the source code should still be easily readable in the
report. My primary inspiration here is the reports generated by Cray's tools
(http://docs.cray.com/books/S-2496-4101/html-S-2496-4101/z1112823641oswald.html).
These reports are highly regarded within the HPC community. Intel's compiler,
for example, also has an optimization-report capability
(https://software.intel.com/sites/default/files/managed/55/b1/new-compiler-optimization-reports.pdf).
$ cat /tmp/v.c
void bar();
void foo() { bar(); }
void Test(int *res, int *c, int *d, int *p, int n) {
int i;
#pragma clang loop vectorize(assume_safety)
for (i = 0; i < 1600; i++) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
for (i = 0; i < 16; i++) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
foo();
foo(); bar(); foo();
}
D25225 adds -fsave-optimization-record (and
-fsave-optimization-record=filename), and this would be used as follows:
$ clang -O3 -o /tmp/v.o -c /tmp/v.c -fsave-optimization-record
$ llvm-opt-report /tmp/v.yaml > /tmp/v.lst
$ cat /tmp/v.lst
< /tmp/v.c
2 | void bar();
3 | void foo() { bar(); }
4 |
5 | void Test(int *res, int *c, int *d, int *p, int n) {
6 | int i;
7 |
8 | #pragma clang loop vectorize(assume_safety)
9 V4,2 | for (i = 0; i < 1600; i++) {
10 | res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
11 | }
12 |
13 U16 | for (i = 0; i < 16; i++) {
14 | res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
15 | }
16 |
17 I | foo();
18 |
19 | foo(); bar(); foo();
I | ^
I | ^
20 | }
Each source line gets a prefix giving the line number, and a few columns for
important optimizations: inlining, loop unrolling and loop vectorization. An
'I' is printed next to a line where a function was inlined, a 'U' next to an
unrolled loop, and 'V' next to a vectorized loop. These are printed on the
relevant code line when that seems unambiguous, or on subsequent lines when
multiple potential options exist (messages, both positive and negative, from
the same optimization with different column numbers are taken to indicate
potential ambiguity). When on subsequent lines, a '^' is output in the relevant
column.
Annotated source for all relevant input files are put into the listing file
(each starting with '<' and then the file name).
You can disable having the unrolling/vectorization factors appear by using the
-s flag.
Differential Revision: https://reviews.llvm.org/D25262
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283398 91177308-0d34-0410-b5e6-96231b3b80d8
It got disconnected during the cmake conversion. For Miscompilation.cpp,
it was purely advisory for the user and the ToolRunner.cpp version was
trying to compensate for libs and bins in the same directory, which
hasn't been the case for a very long time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283022 91177308-0d34-0410-b5e6-96231b3b80d8