(Re-committed after moving the template specialization under the yaml
namespace. GCC was complaining about this.)
This allows various presentation of this data using an external tool.
This was first recommended here[1].
As an example, consider this module:
1 int foo();
2 int bar();
3
4 int baz() {
5 return foo() + bar();
6 }
The inliner generates these missed-optimization remarks today (the
hotness information is pulled from PGO):
remark: /tmp/s.c:5:10: foo will not be inlined into baz (hotness: 30)
remark: /tmp/s.c:5:18: bar will not be inlined into baz (hotness: 30)
Now with -pass-remarks-output=<yaml-file>, we generate this YAML file:
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 10 }
Function: baz
Hotness: 30
Args:
- Callee: foo
- String: will not be inlined into
- Caller: baz
...
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 18 }
Function: baz
Hotness: 30
Args:
- Callee: bar
- String: will not be inlined into
- Caller: baz
...
This is a summary of the high-level decisions:
* There is a new streaming interface to emit optimization remarks.
E.g. for the inliner remark above:
ORE.emit(DiagnosticInfoOptimizationRemarkMissed(
DEBUG_TYPE, "NotInlined", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CS.getCaller()) << setIsVerbose());
NV stands for named value and allows the YAML client to process a remark
using its name (NotInlined) and the named arguments (Callee and Caller)
without parsing the text of the message.
Subsequent patches will update ORE users to use the new streaming API.
* I am using YAML I/O for writing the YAML file. YAML I/O requires you
to specify reading and writing at once but reading is highly non-trivial
for some of the more complex LLVM types. Since it's not clear that we
(ever) want to use LLVM to parse this YAML file, the code supports and
asserts that we're writing only.
On the other hand, I did experiment that the class hierarchy starting at
DiagnosticInfoOptimizationBase can be mapped back from YAML generated
here (see D24479).
* The YAML stream is stored in the LLVM context.
* In the example, we can probably further specify the IR value used,
i.e. print "Function" rather than "Value".
* As before hotness is computed in the analysis pass instead of
DiganosticInfo. This avoids the layering problem since BFI is in
Analysis while DiagnosticInfo is in IR.
[1] https://reviews.llvm.org/D19678#419445
Differential Revision: https://reviews.llvm.org/D24587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282539 91177308-0d34-0410-b5e6-96231b3b80d8
This allows various presentation of this data using an external tool.
This was first recommended here[1].
As an example, consider this module:
1 int foo();
2 int bar();
3
4 int baz() {
5 return foo() + bar();
6 }
The inliner generates these missed-optimization remarks today (the
hotness information is pulled from PGO):
remark: /tmp/s.c:5:10: foo will not be inlined into baz (hotness: 30)
remark: /tmp/s.c:5:18: bar will not be inlined into baz (hotness: 30)
Now with -pass-remarks-output=<yaml-file>, we generate this YAML file:
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 10 }
Function: baz
Hotness: 30
Args:
- Callee: foo
- String: will not be inlined into
- Caller: baz
...
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 18 }
Function: baz
Hotness: 30
Args:
- Callee: bar
- String: will not be inlined into
- Caller: baz
...
This is a summary of the high-level decisions:
* There is a new streaming interface to emit optimization remarks.
E.g. for the inliner remark above:
ORE.emit(DiagnosticInfoOptimizationRemarkMissed(
DEBUG_TYPE, "NotInlined", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CS.getCaller()) << setIsVerbose());
NV stands for named value and allows the YAML client to process a remark
using its name (NotInlined) and the named arguments (Callee and Caller)
without parsing the text of the message.
Subsequent patches will update ORE users to use the new streaming API.
* I am using YAML I/O for writing the YAML file. YAML I/O requires you
to specify reading and writing at once but reading is highly non-trivial
for some of the more complex LLVM types. Since it's not clear that we
(ever) want to use LLVM to parse this YAML file, the code supports and
asserts that we're writing only.
On the other hand, I did experiment that the class hierarchy starting at
DiagnosticInfoOptimizationBase can be mapped back from YAML generated
here (see D24479).
* The YAML stream is stored in the LLVM context.
* In the example, we can probably further specify the IR value used,
i.e. print "Function" rather than "Value".
* As before hotness is computed in the analysis pass instead of
DiganosticInfo. This avoids the layering problem since BFI is in
Analysis while DiagnosticInfo is in IR.
[1] https://reviews.llvm.org/D19678#419445
Differential Revision: https://reviews.llvm.org/D24587
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282499 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed in https://reviews.llvm.org/D22666, our current mechanism to
support -pg profiling, where we insert calls to mcount(), or some similar
function, is fundamentally broken. We insert these calls in the frontend, which
means they get duplicated when inlining, and so the accumulated execution
counts for the inlined-into functions are wrong.
Because we don't want the presence of these functions to affect optimizaton,
they should be inserted in the backend. Here's a pass which would do just that.
The knowledge of the name of the counting function lives in the frontend, so
we're passing it here as a function attribute. Clang will be updated to use
this mechanism.
Differential Revision: https://reviews.llvm.org/D22825
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280347 91177308-0d34-0410-b5e6-96231b3b80d8
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278896 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Port the ModuleSummaryAnalysisWrapperPass to the new pass manager.
Use it in the ported BitcodeWriterPass (similar to how we use the
legacy ModuleSummaryAnalysisWrapperPass in the legacy WriteBitcodePass).
Also, pass the -module-summary opt flag through to the new pass
manager pipeline and through to the bitcode writer pass, and add
a test that uses it.
Reviewers: mehdi_amini
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23439
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278508 91177308-0d34-0410-b5e6-96231b3b80d8
This adds boilerplate code for all coroutine passes,
the passes are no-ops for now.
Also, a small test has been added to verify that passes execute in
the expected order or not at all if coroutine support is disabled.
Patch by Gor Nishanov!
Differential Revision: https://reviews.llvm.org/D22847
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277033 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the first set of changes implementing the RFC from
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334
This is a cross-sectional patch; rather than implementing the hotness
attribute for all optimization remarks and all passes in a patch set, it
implements it for the 'missed-optimization' remark for Loop
Distribution. My goal is to shake out the design issues before scaling
it up to other types and passes.
Hotness is computed as an integer as the multiplication of the block
frequency with the function entry count. It's only printed in opt
currently since clang prints the diagnostic fields directly. E.g.:
remark: /tmp/t.c:3:3: loop not distributed: use -Rpass-analysis=loop-distribute for more info (hotness: 300)
A new API added is similar to emitOptimizationRemarkMissed. The
difference is that it additionally takes a code region that the
diagnostic corresponds to. From this, hotness is computed using BFI.
The new API is exposed via an analysis pass so that it can be made
dependent on LazyBFI. (Thanks to Hal for the analysis pass idea.)
This feature can all be enabled by setDiagnosticHotnessRequested in the
LLVM context. If this is off, LazyBFI is not calculated (D22141) so
there should be no overhead.
A new command-line option is added to turn this on in opt.
My plan is to switch all user of emitOptimizationRemark* to use this
module instead.
Reviewers: hfinkel
Subscribers: rcox2, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D21771
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275583 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, there was a discrepancy between the population of function
passes in FPasses, and their invocation. Function passes specified on
the command line, after an optimizaton level was simply discared. This
fix PR27509.
Patch by Jesper Antonsson.
Differential Review: http://reviews.llvm.org/D20725
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272770 91177308-0d34-0410-b5e6-96231b3b80d8
looking for it along $PATH. This allows installs of LLVM tools outside of
$PATH to find the symbolizer and produce pretty backtraces if they crash.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272232 91177308-0d34-0410-b5e6-96231b3b80d8
InterleavedAccessPass is an IR-level pass, so this change will enable testing
it with opt. This is part of D20250.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270101 91177308-0d34-0410-b5e6-96231b3b80d8
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269988 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a hook to allow TargetMachine to install passes at the
EP_EarlyAsPossible PassManagerBuilder extension point.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18614
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267763 91177308-0d34-0410-b5e6-96231b3b80d8
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267296 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic takes two arguments, ``%ptr`` and ``%offset``. It loads
a 32-bit value from the address ``%ptr + %offset``, adds ``%ptr`` to that
value and returns it. The constant folder specifically recognizes the form of
this intrinsic and the constant initializers it may load from; if a loaded
constant initializer is known to have the form ``i32 trunc(x - %ptr)``,
the intrinsic call is folded to ``x``.
LLVM provides that the calculation of such a constant initializer will
not overflow at link time under the medium code model if ``x`` is an
``unnamed_addr`` function. However, it does not provide this guarantee for
a constant initializer folded into a function body. This intrinsic can be
used to avoid the possibility of overflows when loading from such a constant.
Differential Revision: http://reviews.llvm.org/D18367
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267223 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a follow-on to apply Duncan's new DIType ODR uniquing from
r266549 and r266713 in more places.
Enable enableDebugTypeODRUniquing() for ThinLTO backends invoked via
libLTO, similar to the way r266549 enabled this for ThinLTO backend
threads launched from gold-plugin.
Also enable enableDebugTypeODRUniquing in opt, similar to the way
r266549 enabled this for llvm-link (on by default, can be disabled with
new -disable-debug-info-type-map option), since we may perform ThinLTO
importing from opt.
Reviewers: dexonsmith, joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19263
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266746 91177308-0d34-0410-b5e6-96231b3b80d8
The fast register-allocator cannot cope with inter-block dependencies without
spilling. This is fine for ldrex/strex loops coming from atomicrmw instructions
where any value produced within a block is dead by the end, but not for
cmpxchg. So we lower a cmpxchg at -O0 via a pseudo-inst that gets expanded
after regalloc.
Fortunately this is at -O0 so we don't have to care about performance. This
simplifies the various axes of expansion considerably: we assume a strong
seq_cst operation and ensure ordering via the always-present DMB instructions
rather than v8 acquire/release instructions.
Should fix the 32-bit part of PR25526.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266679 91177308-0d34-0410-b5e6-96231b3b80d8
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266379 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Let keep llvm-as "dumb": it converts textual IR to bitcode. This
commit removes the dependency from llvm-as to libLLVMAnalysis.
We'll add back summary in llvm-as if we get to a textual
representation for it at some point. In the meantime, opt seems
like a better place for that.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19032
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266131 91177308-0d34-0410-b5e6-96231b3b80d8
Sample-based profiling and optimization remarks currently remove
DICompileUnits from llvm.dbg.cu to suppress the emission of debug info
from them. This is somewhat of a hack and only borderline legal IR.
This patch uses the recently introduced NoDebug emission kind in
DICompileUnit to achieve the same result without breaking the Verifier.
A nice side-effect of this change is that it is now possible to combine
NoDebug and regular compile units under LTO.
http://reviews.llvm.org/D18808
<rdar://problem/25427165>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265861 91177308-0d34-0410-b5e6-96231b3b80d8
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263219 91177308-0d34-0410-b5e6-96231b3b80d8
location in the opt tool to live along side the analysis in LLVM's
libraries.
No functionality changed here, but this will allow me to port the
printer to the new pass manager as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263101 91177308-0d34-0410-b5e6-96231b3b80d8
opt adds Verifier passes in AddOptimizationPasses even if
-disable-verify is on. Fix it so that the extra verification occurs
either when (1) -disable-verifier is off, or (2) -verify-each is on.
Thanks to David Jones for pointing out this behavior!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263090 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is intended to be a performance flag, on the same level as clang
cc1 option "--disable-free". LLVM will never initialize it by default,
it will be up to the client creating the LLVMContext to request this
behavior. Clang will do it by default in Release build (just like
--disable-free).
"opt" and "llc" can opt-in using -disable-named-value command line
option.
When performing LTO on llvm-tblgen, the initial merging of IR peaks
at 92MB without this patch, and 86MB after this patch,setNameImpl()
drops from 6.5MB to 0.5MB.
The total link time goes from ~29.5s to ~27.8s.
Compared to a compile-time flag (like the IRBuilder one), it performs
very close. I profiled on SROA and obtain these results:
420ms with IRBuilder that preserve name
372ms with IRBuilder that strip name
375ms with IRBuilder that preserve name, and a runtime flag to strip
Reviewers: chandlerc, dexonsmith, bogner
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D17946
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263086 91177308-0d34-0410-b5e6-96231b3b80d8
This creates the new-style LoopPassManager and wires it up with dummy
and print passes.
This version doesn't support modifying the loop nest at all. It will
be far easier to discuss and evaluate the approaches to that with this
in place so that the boilerplate is out of the way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261831 91177308-0d34-0410-b5e6-96231b3b80d8
analysis passes, support pre-registering analyses, and use that to
implement parsing and pre-registering a custom alias analysis pipeline.
With this its possible to configure the particular alias analysis
pipeline used by the AAManager from the commandline of opt. I've updated
the test to show this effectively in use to build a pipeline including
basic-aa as part of it.
My big question for reviewers are around the APIs that are used to
expose this functionality. Are folks happy with pass-by-lambda to do
pass registration? Are folks happy with pre-registering analyses as
a way to inject customized instances of an analysis while still using
the registry for the general case?
Other thoughts of course welcome. The next round of patches will be to
add the rest of the alias analyses into the new pass manager and wire
them up here so that they can be used from opt. This will require
extending the (somewhate limited) functionality of AAManager w.r.t.
module passes.
Differential Revision: http://reviews.llvm.org/D17259
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261197 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@258861 91177308-0d34-0410-b5e6-96231b3b80d8
Cloning the module was supposed to guard against the possibility
that the passes may be non-idempotent. However, for some reason
I decided to put that AFTER the passes had already run on the
module, defeating the point entirely. Fix that by moving up the
CloneModule as is done in llc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254819 91177308-0d34-0410-b5e6-96231b3b80d8
`Out` can be null if no output is requested, so move any access
to it inside the conditional. Thanks to Justin Bogner for finding
this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254804 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Lately, I have submitted a number of patches to fix bugs that
only occurred when using the same pass manager to compile multiple
modules (generally these bugs are failure to reset some persistent
state). Unfortunately I don't think there is currently a way to test
that from the command line. This adds a very simple flag to both llc
and opt, under which the tools will simply re-run their respective
pass pipelines using the same pass manager on (a clone of the same
module). Additionally, we verify that both outputs are bitwise the
same.
Reviewers: yaron.keren
Subscribers: loladiro, yaron.keren, kcc, llvm-commits
Differential Revision: http://reviews.llvm.org/D14965
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254774 91177308-0d34-0410-b5e6-96231b3b80d8
folding the code into the main Analysis library.
There already wasn't much of a distinction between Analysis and IPA.
A number of the passes in Analysis are actually IPA passes, and there
doesn't seem to be any advantage to separating them.
Moreover, it makes it hard to have interactions between analyses that
are both local and interprocedural. In trying to make the Alias Analysis
infrastructure work with the new pass manager, it becomes particularly
awkward to navigate this split.
I've tried to find all the places where we referenced this, but I may
have missed some. I have also adjusted the C API to continue to be
equivalently functional after this change.
Differential Revision: http://reviews.llvm.org/D12075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245318 91177308-0d34-0410-b5e6-96231b3b80d8
As suggested by jroelofs in a prior review (D9752),
it makes sense to generally prefer multi-line format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239632 91177308-0d34-0410-b5e6-96231b3b80d8