Split getObject's smarts into checkOffset, use this to replace the
handwritten check in getSectionContents. Similarly, replace checks in
section_rel_begin/section_rel_end with getNumberOfRelocations.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221873 91177308-0d34-0410-b5e6-96231b3b80d8
On error conditions, relocAddressLess might claim that a value is less
than itself. Instead, abort llvm-readobj. No functionality change
intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221872 91177308-0d34-0410-b5e6-96231b3b80d8
lib/Object is supposed to be robust to malformed object files. Don't
assert if we don't have a symbol table. I'll try to come up with a test
case later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221870 91177308-0d34-0410-b5e6-96231b3b80d8
getObject didn't consider the case where a pointer came before the start
of the object file. No test is included, trying to come up with
something reasonable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221868 91177308-0d34-0410-b5e6-96231b3b80d8
The reading of 64 bit values could still be optimized, but at least this cuts
down on the number of virtual calls to fetch more data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221865 91177308-0d34-0410-b5e6-96231b3b80d8
between splitting a vector into 128-bit lanes and recombining them vs.
decomposing things into single-input shuffles and a final blend.
This handles a large number of cases in AVX1 where the cross-lane
shuffles would be much more expensive to represent even though we end up
with a fast blend at the root. Instead, we can do a better job of
shuffling in a single lane and then inserting it into the other lanes.
This fixes the remaining bits of Halide's regression captured in PR21281
for AVX1. However, the bug persists in AVX2 because I've made this
change reasonably conservative. The cases where it makes sense in AVX2
to split into 128-bit lanes are much more rare because we can often do
full permutations across all elements of the 256-bit vector. However,
the particular test case in PR21281 is an example of one of the rare
cases where it is *always* better to work in a single 128-bit lane. I'm
going to try to teach the logic to detect and form the good code even in
AVX2 next, but it will need to use a separate heuristic.
Finally, there is one pesky regression here where we previously would
craftily use vpermilps in AVX1 to shuffle both high and low halves at
the same time. We no longer pull that off, and not for any really good
reason. Ultimately, I think this is just another missing nuance to the
selection heuristic that I'll try to add in afterward, but this change
already seems strictly worth doing considering the magnitude of the
improvements in common matrix math shuffle patterns.
As always, please let me know if this causes a surprising regression for
you.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221861 91177308-0d34-0410-b5e6-96231b3b80d8
re-combining shuffles because nothing was available in the wider vector
type.
The key observation (which I've put in the comments for future
maintainers) is that at this point, no further combining is really
possible. And so even though these shuffles trivially could be combined,
we need to actually do that as we produce them when producing them this
late in the lowering.
This fixes another (huge) part of the Halide vector shuffle regressions.
As it happens, this was already well covered by the tests, but I hadn't
noticed how bad some of these got. The specific patterns that turn
directly into unpckl/h patterns were occurring *many* times in common
vector processing code.
There are still more problems here sadly, but trying to incrementally
tease them apart and it looks like this is the core of the problem in
the splitting logic.
There is some chance of regression here, you can see it in the test
changes. Specifically, where we stop forming pshufb in some cases, it is
possible that pshufb was in fact faster. Intel "says" that pshufb is
slower than the instruction sequences replacing it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221852 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this patch the TypePromotionHelper was promoting only sign extensions.
Supporting zero extensions changes:
- How constants are extended.
- How sign extensions, zero extensions, and truncate are composed together.
- How the type of the extended operation is recorded. Now we need to know the
kind of the extension as well as its type.
Each change is fairly small, unlike the diff.
Most of the diff are comments/variable renaming to say "extension" instead of
"sign extension".
The performance improvements on the test suite are within the noise.
Related to <rdar://problem/18310086>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221851 91177308-0d34-0410-b5e6-96231b3b80d8
Optimize selects of i1 in the presence of 'true' and 'false' operands to simple
logic operations.
This fixes rdar://problem/18960150.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221848 91177308-0d34-0410-b5e6-96231b3b80d8
This folds the compare emission into the select emission when possible, so we
can directly use the flags and don't have to emit a separate compare.
Related to rdar://problem/18960150.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221847 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r221836.
The tests are asserting on some buildbots. This also reverts the
test part of r221837 as it relies on dwarfdump dumping the
accelerator tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221842 91177308-0d34-0410-b5e6-96231b3b80d8
Windows normally limits the length of an absolute path name to 260
characters; directories can have lower limits. These limits increase
to about 32K if you use absolute paths with the special '\\?\'
prefix. Teach Support\Windows\Path.inc to use that prefix as needed.
TODO: Other parts of Support could also learn to use this prefix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221841 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids an issue where AtEndOfStream mistakenly returns true at the /start/ of
a stream.
(In the rare case that the size is known and actually 0, the slow path will still
handle it correctly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221840 91177308-0d34-0410-b5e6-96231b3b80d8
If x is known to have the range [a, b), in a loop predicated by (icmp
ne x, a) its range can be sharpened to [a + 1, b). Get
ScalarEvolution and hence IndVars to exploit this fact.
This change triggers an optimization to widen-loop-comp.ll, so it had
to be edited to get it to pass.
This change was originally landed in r219834 but had a bug and broke
ASan. It was reverted in r219878, and is now being re-landed after
fixing the original bug.
phabricator: http://reviews.llvm.org/D5639
reviewed by: atrick
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221839 91177308-0d34-0410-b5e6-96231b3b80d8
The DIE offset in the accel tables is an offset relative to the start
of the debug_info section, but we were encoding the offset to the
start of the containing CU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221837 91177308-0d34-0410-b5e6-96231b3b80d8
The class used for the dump only allows to dump for the moment, but
it can (and will) be easily extended to support search also.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221836 91177308-0d34-0410-b5e6-96231b3b80d8
Currently FormValues are only used for attributes of DIEs and thus
uers always have a CU lying around when calling into the FormValue
API.
Accelerator tables encode their information using the same Forms
as the attributes, thus it is natural to use DWARFFormValue to
extract/dump them. There is no CU in that case though. Allow the
API to be called with a null CU arguemnt by making the RelocMap
lookup conditional on the CU pointer validity. And document this
new behvior in the header. (Test coverage for this use of the API
comes in the DwarfAccelTable support patch)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221835 91177308-0d34-0410-b5e6-96231b3b80d8
r221820 fixed a problem (PR21548) where an iPTR was used in TLI legality checks,
which isn't valid and resulted in a failed assertion.
The solution was to lower pointer types into the correct target's VT, by
using TL::getValueType instead of EVT::getEVT.
This commit changes 3 other uses of EVT::getEVT, but without any tests:
- One of these non-lowered EVTs is passed to allowsMisalignedMemoryAccesses,
which goes into target's TL implementation and doesn't cause any problem (yet.)
- Two others are passed to TLI.isOperationLegalOrCustom:
- one only looks at extensions, so doesn't concern pointers.
- one only looks at binary operators, so also isn't a problem.
The latter might some day be exposed to pointers and cause the same assert as
the original PR, because there's a comment hinting at also supporting cast ops.
For consistency, update all of them and be done with it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221827 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-on to r221706 and r221731 and discussed in more detail in PR21385.
This patch also loosens the testcase checking for btver2. We know that the "1.0" will be loaded, but
we can't tell exactly when, so replace the CHECK-NEXT specifiers with plain CHECKs. The CHECK-NEXT
sequence relied on a quirk of post-RA-scheduling that may change independently of anything in these tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221819 91177308-0d34-0410-b5e6-96231b3b80d8
One of them (__memcpy_chk) was already there, the others were checked
by comparing function names.
Note that the fortified libfuncs are now part of TLI, but are always
available, because they aren't generated, only optimized into the
non-checking versions.
Differential Revision: http://reviews.llvm.org/D6179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221817 91177308-0d34-0410-b5e6-96231b3b80d8
Make the handling of calls to intrinsics in CGSCC consistent:
they are not treated like regular function calls because they
are never lowered to function calls.
Without this patch, we can get dangling pointer asserts from
the subsequent loop that processes callsites because it already
ignores intrinsics.
See http://llvm.org/bugs/show_bug.cgi?id=21403 for more details / discussion.
Differential Revision: http://reviews.llvm.org/D6124
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221802 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Reapply r221772. The old patch breaks the bot because the @indvar_32_bit test
was run whether NVPTX was enabled or not.
IndVarSimplify should not widen an indvar if arithmetics on the wider
indvar are more expensive than those on the narrower indvar. For
instance, although NVPTX64 treats i64 as a legal type, an ADD on i64 is
twice as expensive as that on i32, because the hardware needs to
simulate a 64-bit integer using two 32-bit integers.
Split from D6188, and based on D6195 which adds NVPTXTargetTransformInfo.
Fixes PR21148.
Test Plan:
Added @indvar_32_bit that verifies we do not widen an indvar if the arithmetics
on the wider type are more expensive. This test is run only when NVPTX is
enabled.
Reviewers: jholewinski, eliben, meheff, atrick
Reviewed By: atrick
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D6196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221799 91177308-0d34-0410-b5e6-96231b3b80d8
Returning more information will allow BitstreamReader to be simplified a bit
and changed to read 64 bits at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221794 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Large-model was added first. With the addition of support for multiple PIC
models in LLVM, now add small-model PIC for 32-bit PowerPC, SysV4 ABI. This
generates more optimal code, for shared libraries with less than about 16380
data objects.
Test Plan: Test cases added or updated
Reviewers: joerg, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, mcrosier, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5399
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221791 91177308-0d34-0410-b5e6-96231b3b80d8
cases from Halide folks. This initial step was extracted from
a prototype change by Clay Wood to try and address regressions found
with Halide and the new vector shuffle lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221779 91177308-0d34-0410-b5e6-96231b3b80d8