header is just the entry block to the loop, and it needn't be at
the top of the loop in the code layout.
Remove the code that suppressed loop alignment for outer loops,
so that outer loops are aligned.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84158 91177308-0d34-0410-b5e6-96231b3b80d8
so get rid of eh.selector.i64 and rename eh.selector.i32 to eh.selector.
Likewise for eh.typeid.for. This aligns us with gcc, which always uses a
32 bit value for the selector on all platforms. My understanding is that
the register allocator used to assert if the selector intrinsic size didn't
match the pointer size, and this was the reason for introducing the two
variants. However my testing shows that this is no longer the case (I
fixed some bugs in selector lowering yesterday, and some more today in the
fastisel path; these might have caused the original problems).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84106 91177308-0d34-0410-b5e6-96231b3b80d8
to remat non-load instructions as loads, and the remat code now uses
the UnmodeledSideEffects flags, MachineMemOperands, and similar things
to decide which instructions are valid for rematerialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84060 91177308-0d34-0410-b5e6-96231b3b80d8
truncating an SDValue (depending on whether the target
type is bigger or smaller than the value's type); or zero
extending or truncating it. Use it in a few places (this
seems to be a popular operation, but I only modified cases
of it in SelectionDAGBuild). In particular, the eh_selector
lowering was doing this wrong due to a repeated rather than
inverted test, fixed with this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84027 91177308-0d34-0410-b5e6-96231b3b80d8
bootstrap of FSF-style PPC, so there is some
reason to believe the original bug (which was
never analyzed) has been fixed, probably by
82266.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83871 91177308-0d34-0410-b5e6-96231b3b80d8
into MachineInstrs. This is mostly just moving the code from
ScheduleDAGSDNodesEmit.cpp into a new class. This decouples MachineInstr
emitting from scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83699 91177308-0d34-0410-b5e6-96231b3b80d8
is trivially rematerializable and integrate it into
TargetInstrInfo::isTriviallyReMaterializable. This way, all places that
need to know whether an instruction is rematerializable will get the
same answer.
This enables the useful parts of the aggressive-remat option by
default -- using AliasAnalysis to determine whether a memory location
is invariant, and removes the questionable parts -- rematting operations
with virtual register inputs that may not be live everywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83687 91177308-0d34-0410-b5e6-96231b3b80d8
While recording beginning of a function, use scope info from the first location entry instead of just relying on first location entry itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83684 91177308-0d34-0410-b5e6-96231b3b80d8
to declare that they preserve other passes without needing to pull in
additional header file or library dependencies. Convert MachineFunctionPass
and CodeGenLICM to make use of this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83555 91177308-0d34-0410-b5e6-96231b3b80d8
implementations with a new MachineInstr::isInvariantLoad, which uses
MachineMemOperands and is target-independent. This brings MachineLICM
and other functionality to targets which previously lacked an
isInvariantLoad implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83475 91177308-0d34-0410-b5e6-96231b3b80d8
a virtual register to eliminate a frame index, it can return that register
and the constant stored there to PEI to track. When scavenging to allocate
for those registers, PEI then tracks the last-used register and value, and
if it is still available and matches the value for the next index, reuses
the existing value rather and removes the re-materialization instructions.
Fancier tracking and adjustment of scavenger allocations to keep more
values live for longer is possible, but not yet implemented and would likely
be better done via a different, less special-purpose, approach to the
problem.
eliminateFrameIndex() is modified so the target implementations can return
the registers they wish to be tracked for reuse.
ARM Thumb1 implements and utilizes the new mechanism. All other targets are
simply modified to adjust for the changed eliminateFrameIndex() prototype.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83467 91177308-0d34-0410-b5e6-96231b3b80d8